7 resultados para Latent Semantic Indexing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.
Resumo:
Ontologies play a core role to provide shared knowledge models to semantic-driven applications targeted by Semantic Web. Ontology metrics become an important area because they can help ontology engineers to assess ontology and better control project management and development of ontology based systems, and therefore reduce the risk of project failures. In this paper, we propose a set of ontology cohesion metrics which focuses on measuring (possibly inconsistent) ontologies in the context of dynamic and changing Web. They are: Number of Ontology Partitions (NOP), Number of Minimally Inconsistent Subsets (NMIS) and Average Value of Axiom Inconsistencies (AVAI). These ontology metrics are used to measure ontological semantics rather than ontological structure. They are theoretically validated for ensuring their theoretical soundness, and further empirically validated by a standard test set of debugging ontologies. The related algorithms to compute these ontology metrics also are discussed. These metrics proposed in this paper can be used as a very useful complementarity of existing ontology cohesion metrics.
Resumo:
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
Resumo:
A simple and environment friendly chemical route for detecting latent fingermarks by one-step single-metal nanoparticles deposition method (SND) was achieved successfully on several non-porous items. Gold nanoparticles (AuNPs) synthesized using sodium borohydride as reducing agent in the presence of glucose, were used as working solution for latent fingermarks detection. The SND technique just needs one step to obtain clear ridge details in a wide pH range (2.5-5.0), whereas the standard multi-metal deposition (MMD) technique requires six baths in a narrow pH range (2.5-2.8). The SND is very convenient to detect latent fingermarks in forensic scene or laboratory for forensic operators. The SND technique provided sharp and clear development of latent fingermarks, without background staining, dramatically diminished the bath steps.