281 resultados para Laser pulses
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.
Resumo:
Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique. (c) 2005 Optical Society of America.
Resumo:
Control of multiple filamentation by laser-induced microlens effect due to a nonlinear interaction of two overlapping laser beams inside a glass plate was demonstrated. Individual or multiple spots on the white light pattern which is a product of multiple filamentation through a mesh can be switched on and off with a very high contrast ratio on a femtosecond time scale. This phenomenon can find applications such as ultrafast optical switch and high-speed sampling. (C) 2005 American Institute of Physics.
Resumo:
The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
Resumo:
Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.
Resumo:
Using an unperturbed scattering theory, the characteristics of H atom photoionization are studied respectively by a linearly- and by a circularly- polarized one-cycle laser pulse sequence. The asymmetry for photoelectrons in two directions opposite to each other is investigated. It is found that the asymmetry degree varies with the carrier-envelope (CE) phase, laser intensity, as well as the kinetic energy of photoelectrons. For the linear polarization, the maximal ionization rate varies with the CE phase, and the asymmetry degree varies with the CE phase in a sine-like pattern. For the circular polarization, the maximal ionization rate keeps constant for various CE phases, but the variation of asymmetry degree is still in a sine-like pattern.
Resumo:
The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.
Resumo:
The lifetime of a plasma channel produced by self-guiding intense femtosecond laser pulses in air is largely prolonged by adding a high voltage electrical field in the plasma and by introducing a series of femtosecond laser pulses. An optimal lifetime value is realized through adjusting the delay among these laser pulses. The lifetime of a plasma channel is greatly enhanced to 350 ns by using four sequential intense 100fs( FWHM) laser pulses with an external electrical field of about 350kV/m, which proves the feasibility of prolonging the lifetime of plasma by adding an external electrical field and employing multiple laser pulses. (c) 2006 Optical Society of America.
Resumo:
Neutron production from a thin deuterium-tritium (D-T) foil irradiated by two intense femtosecond laser pulses from opposite sides with zero phase difference is studied analytically and numerically. For the interaction of a laser pulse of amplitude a = 7, focal area 100 mu m(2) and areal density 4.4 x 10(18) cm(-2) with a D-T plasma foil, about 1.17 x 10(21) neutron s(-1) can be obtained, much more than from other methods. The profiles of the ion and electron densities are also calculated.
Resumo:
We experimentally investigate the high-order harmonic generation in argon gas using a driving laser pulse at a center wavelength of 1240 nm. High-contrast fine interference fringes could be observed in the harmonic spectra near the propagation axis, which is attributed to the interference between long and short quantum paths. We also systematically examine the variation of the interference fringe pattern with increasing energy of the driving pulse and with different phase-matching conditions.
Resumo:
In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.
Resumo:
A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America