5 resultados para Landing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Research and field experience have shown that well-path control is important in many cases, not only to reach the desired coordinates, but also to arrive at the well completion target from the preferred trajectory.
Resumo:
The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.
Resumo:
This paper reports the occurrence of a marine brachyuran crab species Eucrate alcocki SerSne, in SerSne et al., 1973, of the family Euryplacidae Stimpson, 1871, for first time from India, based on a male specimen from Parangipettai fish landing centre in Bay of Bengal, Southeast Coast of India. Although morphologically corresponding with what is currently defined as E. alcocki, the color pattern of the carapace of the present specimen is rather different from that of the Chinese material-only the anterior fifth of the carapace is marked with scattered red spots, the rest of the surface is yellowish, with four unusually shaped red blotches which almost look like Sanskrit characters.
Resumo:
On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.
Resumo:
Synthetic Geology Information System (SGIS) is an important constituent part of the theory of Engineering Geomechanics Mate-Synthetic (EGMS), and is the information system more suited for the collection, storage, management, analysis and processing to the information coming from engineering geology,' geological engineering and geotechnical engineering. Its contents involve various works and methods of the investigation, design, and construction in different stages of the geological engineering. Engineering geological and three-dimensional modeling and visualization is the fundamental part of the SGIS, and is a theory, method and technique by which, adopting the computer graphics and image processing techniques, the data derived from engineering geological survey and the calculated results obtained from the geomechanical numerical simulation and analysis are converted to the graphics and images displayed on the computer screen and can be processed interactively. In this paper, the significance and realizing approaches of the three-dimensional modeling and visualization for the complex geological mass in the engineering geology are discussed and the methods of taking advantage of the interpolation and fitting for the scattered and field-surveyed data to simulate the geological layers, such as the topography and earth surface, the groundwater table and the stratum boundary, are researched into. At the mean time, in mind the characteristics of the structure of the basic data for three-dimensional modeling, its visual management can be resolved into the engineering surveyed database management module, plot parameter management module and data output module and the requirement for basic data management can be fulfilled. In the paper, the establishment and development of the three-dimensional geological information system are probed tentatively, and an instance of three-dimensional visual Engineering Distribution Information System (EDIS), theConstruction Management Information System for an airport, in which the functions, such as the real-time browse among the three-dimensional virtual-reality landscapes of the airport construction from start to finish, the information query to the airport facility and the building in the housing district and the recording and playback of the animation sets for the browse and the takeoff and landing of the planes, is developed by applying the component-mode three-dimensional virtual-reality geological information system (GIS) software development kits (SDK), so the three-dimensional visual management platform is provided for the airport construction. Moreover, in the gaper, integrated with the three-dimensional topography visualization and its application in the Sichuan-Tibet Highways, the method of the digital elevation model (DEM) data collection from the topographic maps is described, and the three-dimensional visualization and the roaming about the terrain along the highway are achieved through computer language programming. Understanding to the important role played by the varied and unique topographical condition in the gestation and germination of the highly-dense, frequently-arising and severely-endangered geological hazards can be deepened.