53 resultados para Lake Shore and Michigan Southern Railway Company
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Small fish abundance is usually high in heavily vegetated habitats in Yangtze lakes, China. Visual and swimming barriers created by dense macrophytes beds could reduce feeding efficiency and growth of small fishes. We tested the hypothesis that small fishes in habitats with dense macrophytes would show decreased feeding efficiency and reduced growth rates by comparing feeding efficiency (measured as the relative weight of fore-gut contents), total length, and condition factor of four small young-of-the-year fishes collected in the near-shore (heavily vegetated) and central (less vegetated) areas of Liangzi Lake. Feeding efficiency, total length, or condition factor were each significantly reduced in the near-shore area compared with the central area for Ctenogobius giurinus, Pseudorasbora parva and Carassius auratus auratus. This supports our hypothesis that vegetation abundance may mediate feeding efficiency and growth of small fishes. Although Hypseleotris swinhonis did not show significant decreases in feeding efficiency or growth in the near-shore area, there was not any reversed tendency, i.e. increased feeding rate or growth in the near-shore area compared to the central area.
Resumo:
149 complete mitochondrial DNA (mtDNA) cytochrome b (Cyt b) genes (1140 bp) of Gymnocypris przewalskii, Gymnocypris eckloni and Gymnocyptis scolistomus from the Lake Qinghai, Yellow River and Qaidam Basin were sequenced and analyzed. Consistent dendrogram indicated that the samples collected from the same species do not constitute a separate monophyletic group and all the samples were grouped into three highly divergent lineages (A, B and C). Among them, Lineage A contained all samples of G. przewalskii from the Lake Qinghai and partial samples of the G. eckloni from the Yellow River. Lineage B contained the remaining samples of G. eckloni from the Yellow River. Lineage C was composed of a monophyletic group by G. eckloni from the Qaidam Basin. Analysis of molecular variance (AMOVA) indicated that most of genetic variations were detected within these three mtDNA lineages (93.12%), suggesting that there are three different lineages of Gymnocypris in this region. Our Cyt b sequence data showed that G. przewalskii was not a polytypic species, and G. scolistomus was neither an independent species nor a subspecies of G. eckloni. The divergent mtDNA lineages of G. eckloni from the Yellow River suggested that gene flow between the different populations was restricted to a certain extent by several gorges on the upper reach of the Yellow River. Lineage B of G. eckloni might be the genetic effect from the ancestor which was incorporated with the endemic schizothoracine fishes when the headward erosion of the Yellow River reached to its current headwaters of late. The G. eckloni from Basin Qaidam was a monophyletic group (lineage C) and F-st values within G. eckloni from the Yellow River were higher than 0.98, suggesting that the gene flow has been interrupted for a long time and the G. eckloni from Basin Qaidam might have been evolved into different species by ecology segregation. The correlation between the rakers number of Gymnocypris and population genetic variation was not significant. All Gymnocypris populations exhibited a low nucleotide diversity (pi = 0.00096-0.00485). Therefore the Gymnocyptis populations from Basin Qaidam could have experienced severe bottleneck effect in history. Our result suggested Gym-nocypris populations of Basin Qaidam should give a high priority in conservation programs.
Resumo:
Organic pollutants, especially persistent organic pollutants were examined in the water and surface sediments of Taihu Lake, China. Both 12 water and 12 sediment samples were collected over the lake. C-18 solid-phase extraction technique was applied to extract organic pollutants in collected water samples. Soxhlet extraction procedure was used to extract organic pollutants in sediment samples. The analysis was performed by GC-MS controlled by a Hewlett Packard chemstation. Two hundred and seventy-three kinds of organic chemicals in water were examined, 200 more than that detected in 1985; 188 kinds of chemicals in sediments were detected as well. Among them 21 kinds of chemicals belong to priority pollutants as well as 17 kinds to be the endocrine disruptors. The concentrations of the pollutants were more than 2 times higher than that in 1985. The possible source and relation to anthropogenic activity were discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
IEECAS SKLLQG
Resumo:
After the half century exploration, previous scholar evaluating thought that there were poor Petro-Geological conditions in Chepaizi area of Zhungar basin. Recently, with the great discovery in the Well Pai2,the study on the subtle reservoir in Chepaizi area are gained great attentions by the scholars all over the world day by day. Chepaizi uplift is a inherited palaeohigh, and its structural traps are undeveloped. The sedimentary faces of Shawan Formation of Neogene have apron type of alluvial fan, alluvial plain, alluvial fan delta, salt lake, shore and shallow lake and so on. The sedimentary faces of Shawan Formation of Well Pai2 is alluvial fan delta and shore and shallow lake, the first part of Shawan Formation(N1s1) is the main target for exploration. Using the seismic forward, property analysis, spectral factorization, logging restrain inversion and so on, The spatial distribution of the sand reservoir and its hydrocarbon, predicted and 20 lithology traps in 5 substratums were carried out. The traps have a total areal of 107.13 Km2, and the geological reserves in it can reach 8703.7×104t. After comprehensive research on the trap,reservoir, cap and the condition of the hydrocarbon accumulation, it is considered that the elements of hydrocarbon in Chepaizi area are various. Because it can’t generate hydrocarbon, the oil and gas conducting and accumulation are the most important factors in this area, and the validity of the lithology traps in monoclinal is another important factor. Research indicates that the master control factor of the subtle reservoir in Chepaizi area is fault and sand. The sand of beach and sandbar provide the space for the hydrocarbon accumulation, the fault provides the migration channel for the hydrocarbon. Most faults have a characteristics of up seal and the down open, which not only can conduct hydrocarbon, but also can prevent hydrocarbon overtopping, therefore the effect trap is results of good match of fault and sand.
Resumo:
w Traditionally, nitrogen control is generally considered an important component of reducing lake eutrophication and cyanobacteria blooms. However, this viewpoint is refuted recently by researchers in China and North America. In the present paper, the traditional viewpoint of nitrogen control is pointed out to lack a scientific basis: the N/P hypothesis is just a subjective assumption; bottle bioassay experiments fail to simulate the natural process of nitrogen fixation. Our multi-year comparative research in more than 40 Yangtze lakes indicates that phosphorus is the key factor determining phytoplankton growth regardless of nitrogen concentrations and that total phytoplankton biomass is determined by total phosphorus and not by total nitrogen concentrations. These results imply that, in the field, nitrogen control will not decrease phytoplankton biomass. This finding is supported by a long-term whole-lake experiment from North America. These outcomes can be generalized in terms that a reduction in nitrogen loading may not decrease the biomass of total phytoplankton as it can stimulate blooms of nitrogen-fixing cyanobacteria. To mitigate eutrophication, it is not nitrogen but phosphorus that should be reduced, unless nitrogen concentrations are too high to induce direct toxic impacts on human beings or other organisms. Finally, details are provided on how to reduce controls on nitrogen and how to mitigate eutrophication. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
From June 2004 to December 2004, Lake Dianchi, which had large scale of cyanobacterial blooms was investigated in order to study P-fractionation in the suspended matter and the sediment. The investigation improves our understanding of phosphorus in Lake Dianchi and the relationship between phosphorus and cyanobacterial blooms. It contributes to the available literature on the behavior of P in hypertrophic lakes. The distribution of P-fractions in Lake Dianchi was not uniform from northwest to south, but was closely related to the trophic status of the whole lake. The concentrations of total phosphorus, labile P (NH4Cl-P), Organic P (NaOH-NRP) and loss on ignition in suspended matter were positively correlated with the strength of cyanobacterial blooms. Total phosphorus in suspended matter was relatively stable for almost half an year and closely related to Chl. a concentration. The main content of organic phosphorus is in the cyanobacterial blooms. The concentrations of phosphorus bound to metal oxides and carbonates (NaOH-SRP and HCl-P) in sediment were similar to NaOH-SRP and HCl-P in the corresponding suspended matter. The latter two forms of P in suspended matter were not affected by cyanobacterial blooms, indicating that the inorganic phosphorus is derived from the sediment after resuspension from the sediment due to wind and wave action. The contribution of the different P-fractions to TP in sediment and in suspended matter indicates that NH4Cl-P in the suspended matter is an important buffer for maintaining dissolved phosphorus in water.
Resumo:
Nitrogen and phosphorus dynamics in relation to fallowing in a fish cage farm was investigated in a shallow lake in China. Four sampling sites were set: beneath the cages, at the cage sides, and 50 and 100 m east of the cage farm. Total nitrogen (TN) and total phosphorus (TP) in lake water and sediment were analyzed during a 2-year rearing cycle. The cage culture had a fish yield of 16.3-39.2 tonnes in the study period. Based on the mass balance equation, 1533-3084 kg TN and 339-697 kg TP were contributed to the lake environment. Nitrogen and phosphorous concentrations showed greater increase in the first culture period than in the second rearing cycle. No obvious changes were found at the sampling sites 50 and 100 m east of the cages during the study periods. Main impacts were found close to the cages (beneath the cages and at the cage side); the sampling points at the cage side showed relatively high TN and TP sedimentation. After 3 months of fallowing, water TN and TP decreased significantly but the sediment TN and TP contents remained high. Therefore, recovery seems to happen during fallowing but attention should be paid to whether the culture continues to operate in the future.
Resumo:
Genetic diversity of the plankton community in Lake Xiliang was depicted by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Seventy-seven bands (33 of 16S rDNA and 44 of 18S rDNA) were detected, sixty-two planktonic taxa were identified in six sample stations in November 2007. The most common taxa were Ceratium hirundinella, Bdelloidea, Keratella cochlearis, Polyarthra trigla, and copepod nauplii. Based on environmental factors, taxonomic composition, and PCR-DGGE fingerprinting, unweighted pair-group method using arithmetic averages clustering and principal components analysis were used to analyze habitat similarities. There was distinct spatial heterogeneity in Lake Xiliang, and the genetic diversity of the plankton community was closely related to taxonomic composition and environmental factors.
Resumo:
Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.