43 resultados para Lagrangian
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time steps n and n + 1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.
Resumo:
By the semi-inverse method proposed by He, a Lagrangian is established for the large deflection problem of thin circular plate. Ritz method is used to obtain an approximate analytical solution of the problem. First order approximate solution is obtained, which is similar to those in open literature. By Mathematica a more accurate solution can be deduced.
Resumo:
The application of large-eddy simulation (LES) to turbulent transport processes requires accurate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics determining single-particle dispersion to those of pair dispersion and multiparticle dispersion. Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation. These two effects tend to cancel one another leading to an accurate prediction of the longtime turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to underestimate significantly the rate of relative dispersion of particle pairs and multiple-particles, when initial separation distances are less than the minimum resolved scale due to the lack of subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity correlation is further confirmed by a theoretical analysis using a turbulence closure theory.
Resumo:
The Taylor series expansion method is used to analytically calculate the Eulerian and Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correlation functions can be obtained from the series expansions. Especially, the propagation velocity and sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities mainly determine the space-time correlations.
Resumo:
A scale-similarity model for Lagrangian two-point, two-time velocity correlations LVCs in isotropic turbulence is developed from the Kolmogorov similarity hypothesis. It is a second approximation to the isocontours of LVCs, while the Smith-Hay model is only a first approximation. This model expresses the LVC by its space correlation and a dispersion velocity. We derive the analytical expression for the dispersion velocity from the Navier-Stokes equations using the quasinormality assumption. The dispersion velocity is dependent on enstrophy spectra and shown to be smaller than the sweeping velocity for the Eulerian velocity correlation. Therefore, the Lagrangian decorrelation process is slower than the Eulerian decorrelation process. The data from direct numerical simulation of isotropic turbulence support the scale-similarity model: the LVCs for different space separations collapse into a universal form when plotted against the separation axis defined by the model.
Resumo:
The application of large-eddy simulation (LES) to particle-laden turbulence raises such a fundamental question as whether the LES with a subgrid scale (SGS) model can correctly predict Lagrangian time correlations (LTCs). Most of the currently existing SGS models are constructed based on the energy budget equations. Therefore, they are able to correctly predict energy spectra, but they may not ensure the correct prediction on the LTCs. Previous researches investigated the effect of the SGS modeling on the Eulerian time correlations. This paper is devoted to study the LTCs in LES. A direct numerical simulation (DNS) and the LES with a spectral eddy viscosity model are performed for isotropic turbulence and the LTCs are calculated using the passive vector method. Both a priori and a posteriori tests are carried out. It is observed that the subgrid-scale contributions to the LTCs cannot be simply ignored and the LES overpredicts the LTCs than the DNS. It is concluded from the straining hypothesis that an accurate prediction of enstrophy spectra is most critical to the prediction of the LTCs.
Resumo:
By using Lagrangian method, the flow properties of a dusty-gas point source in a supersonic free stream were studied and the particle parameters in the near-symmetry-axis region were obtained. It is demonstrated that fairly inertial particles travel along oscillating and intersecting trajectories between the bow and termination shock waves. In this region,formation of "multi-layer structure" in particle distribution with alternating low- and highdensity layers is revealed. Moreover, sharp accumulation of particles occurs near the envelopes of particle trajectories.
Resumo:
采用有限元方法研究裂纹在I型短脉冲载荷作用下应力强度因子随时间的变化,用应力强度 因子的初始上升时间T_r对时间坐标无量纲化,对应力强度因子初始上升段进行曲线拟合, 得到了上升段的曲线表达式。运用简单弹性梁理论和Lagrangian运动方程,获得载荷与时间对裂纹作用的关系式,结合有限元的结果,得到了上升时间T_r的计算表达式,并进一步推 出了裂纹在冲击载荷作用下起裂的临界载荷面。
Resumo:
An algorithm based on flux-corrected transport and the Lagrangian finite element method is presented for solving the problem of shock dynamics. It is verified through the model problem of one-dimensional strain elastoplastic shock wave propagation that the algorithm leads to stable, non-oscillatory results. Shock initiation and detonation wave propagation is simulated using the algorithm, and some interesting results are obtained. (C) 1999 Academic Press.
Resumo:
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas
Resumo:
The present paper studies numerical modelling of near-wall two-phase flows induced by a normal shock wave moving at a constant speed, over a micronsized particles bed. In this two-fluid model, the possibility of particle trajectory intersection is considered and a full Lagrangian formulation of the dispersed phase is introduced. The finiteness of the Reynolds and Mach numbers of the flow around a particle as well as the fineness of the particle sizes are taken into account in describing the interactions between the carrier- and dispersed- phases. For the small mass-loading ratio case, the numerical simulation of flow structure of the two phases is implemented and the profiles of the particle number density are obtained under the constant-flux condition on the wall. The effects of the shock Mach number and the particle size and material density on particle entrainment motion are discussed in detail.The obtained results indicate that interphase non-equilibrium in the velocity and temperature is a common feature for this type of flows and a local particle accumulation zone may form near the envelope of the particle trajectory family.
Resumo:
A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.
Resumo:
A fully nonlinear and dispersive model within the framework of potential theory is developed for interfacial (2-layer) waves. To circumvent the difficulties arisen from the moving boundary problem a viable technique based on the mixed Eulerian and Lagrangian concept is proposed: the computing area is partitioned by a moving mesh system which adjusts its location vertically to conform to the shape of the moving boundaries but keeps frozen in the horizontal direction. Accordingly, a modified dynamic condition is required to properly compute the boundary potentials. To demonstrate the effectiveness of the current method, two important problems for the interfacial wave dynamics, the generation and evolution processes, are investigated. Firstly, analytical solutions for the interfacial wave generations by the interaction between the barotropic tide and topography are derived and compared favorably with the numerical results. Furthermore simulations are performed for the nonlinear interfacial wave evolutions at various water depth ratios and satisfactory agreement is achieved with the existing asymptotical theories. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A global numerical model for shallow water flows on the cubed-sphere grid is proposed in this paper. The model is constructed by using the constrained interpolation profile/multi-moment finite volume method (CIP/MM FVM). Two kinds of moments, i.e. the point value (PV) and the volume-integrated average (VIA) are defined and independently updated in the present model by different numerical formulations. The Lax-Friedrichs upwind splitting is used to update the PV moment in terms of a derivative Riemann problem, and a finite volume formulation derived by integrating the governing equations over each mesh element is used to predict the VIA moment. The cubed-sphere grid is applied to get around the polar singularity and to obtain uniform grid spacing for a spherical geometry. Highly localized reconstruction in CIP/MM FVM is well suited for the cubed-sphere grid, especially in dealing with the discontinuity in the coordinates between different patches. The mass conservation is completely achieved over the whole globe. The numerical model has been verified by Williamson's standard test set for shallow water equation model on sphere. The results reveal that the present model is competitive to most existing ones. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.