215 resultados para LIPID-MEMBRANES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
RESEARCH ON ELECTRICAL-PROPERTIES OF AMPHIPHILIC LIPID-MEMBRANES BY MEANS OF INTERDIGITAL ELECTRODES
Resumo:
Lipids are the main component of all cell membranes and also important mimetic materials. Moreover, it was found recently that they can be used as sensitive membranes for olfactory and taste sensors. Hence the understanding of lipid resistance is important both in sensors and in life sciences. Thirteen lipids were examined by means of interdigital electrodes with narrow gaps of 20-50 mu m, made by IC technology. The membrane lateral resistance in air, resisting electrical voltage, the influence of impurities on resistance and the resistance change in acetic acid vapour are presented for the first time. It is shown that the electrical resistivity for self-assembling lipids depends on their duration of being in an electric field and the content of the conductive impurities. The interdigital electrode is a transducer as well as a powerful tool for researching biomaterials and mimicking materials. The conducting mechanism of lipids is discussed. This method is also suitable for some polymer membranes.
Resumo:
The interaction of polyamidoamine (PAMAM) dendrimers (generations 1-7) with supported bilayer lipid membranes was studied by cyclic votammetry and ac impedance. It is shown that the dendrimers (generations 4-6) can induce defects in the Pt-electrode-supported bilayer lipid membrane. The ability of dendrimers to induce defects was dependent on their shapes and surface charge. The results are consistent with a change in the morphology of the dendrimers from an open, branched structure for generations 1-4 to a closed, increasingly compact surface for generations 5-7.
Resumo:
Calf-thymus DNA-incorporated bilayer lipid membranes supported on a glassy carbon (GC) electrode was prepared by making layers of phosphatidylcholine dimyristoyl (DMPC) on GC electrode. DNA in the BLM was characterized by cyclic voltammetry, IR and AFM, and lipid layers formed on the GC electrode were demonstrated to be a bilayer lipid membrane by electrochemical impedance experiment. In IR and AFM experiments the findings indicated that DNA was incorporated into BLM. The ion channel of bilayer lipid membranes incorporated was studied. The result showed that the ion channel was opened in the presence of the stimulus quinacrine. In the absence of quinacrine the channel was switched. The process can repeat itself many times. The impedance spectroscopy measurements demonstrate that the stimulus quinacrine opens the channel for permeation of marker ion. The mechanism of forming an ion channel was investigated.
Resumo:
The influence of K7Fe3+P2W17O62H2 on l-alpha-phosphatidylcholine/cholesterol bilayer lipid membrane on Pt electrode was studied by voltammetry and AC impedance spectroscopy. The interaction of the polyoxometalates with the BLM can promote the access of Ru(NH3)(6)(3+) and [Fe(CN)(6)](3-/4-) to the electrode surface. It was found that some kind of pores had been formed on the BLM by AFM. The phenomenon is attributed to the interaction of K7Fe3+P2W17O62H2 with phosphatidylcholine phosphate groups located in its outer leaflet. Experimental results are helpful to understand the biological activity of the polyoxometalates in vivo.
Resumo:
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.
Resumo:
A new kind of solid substrate, a glassy carbon (GC) electrode, was selected to support lipid layer membranes. On the surface of the GC electrode, we made layers of didodecyldimethylammonium bromide (a synthetic lipid). From electrochemical impedance experiments, we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We studied the ion channel behavior of the supported bilayer lipid membrane. In the presence of perchlorate anions as the stimulus and ruthenium(II) complex cations as the marker ions, the lipid membrane channel was open and exhibited distinct channel current. The channel was in a closed state in the absence of perchlorate anions.
Resumo:
The preparation and characteristics of bilayer lipid membranes including conventional bilayer membrane, solid supported self-assembling bilayer lipid membrane, solid supported hybrid bilayer membrane are described in this paper, The applications of bilayer lipid membranes in electrochemical biosensors are reviewed and the future development of electrochemical biosensor based on bilayer lipid membranes is discussed.
Resumo:
A kind of solid substrate, glassy carbon (GC) electrode. was selected to support self-assembled lipid layer membranes. On the surface of GC electrode. we made layers of dimyristoylphosphatidylcholine (DMPG, a kind of lipid). From electrochemical impedance experiments. we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We immobilized horseradish peroxidase (HRP) into the supported bilayer lipid membranes (s-BLM) to develop a kind of mediator-free biosensor for H2O2. The biosensor exhibited fine electrochemical response, stability and reproducibility due to the presence of the s-BLM. As a model of biological membrane, s-BLM could supply a biological environment for enzyme and maintain its activity. So s-BLM is an ideal choice to immobilize enzyme for constructing the mediator-free biosensor based on GC electrode. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Gramicidin within the lipid bilayer matrix is a well-known channel-forming polypeptide, but the mechanism of the ions across the membrane induced by gramicidin is not well understood. We found that at very low concentration of gramicidin in a bilayer lipid membrane, the channel behavior was controlled by the voltage applied across the membrane. When the voltage is higher than 75 mV, the channel is closing, while lower than 75 mV, the channel is opening. But when the concentration of the gramicidin in the BLMs is high, the channel behavior is changed into voltage-independent. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The voltammetric behaviour of dye-modified supported bilayer lipid membranes is investigated. (C) 1997 Elsevier Science S.A.
Resumo:
In the TCNQ-modified BLM, the voltammetric response is different due to the different methods used to prepare the membrane forming solution. The direct and indirect dissolved methods result in irreversible and reversible responses respectively. These results can be explained by the different styles of the orientation of TCNQ in the membrane. The reversible response is controlled by the diffusion of electroactive species in the interior of the membrane. When MB is used to modify the BLM, very complex voltammograms are obtained. The intersection of the voltammetric curves can be regarded to be owing to the appearance of new phase in the membrane caused by MB. But it disappears at lower scan rate. Peak current increases with decreasing scan rate. This indicates that the resistance of the membrane at lower scan rate is lower than that at higher scan rate. Asymmetric curve of MB incorporated BLM is ascribed to the different rates of redox reaction at the two membrane/solution interfaces.
Resumo:
In order to understand the relationship between phospholipid molecular structures and their olfactory responses to odorants, we designed and synthesized four phosphatidylcholine analogues with different long hydrocarbon (CH) chains and selected three natural phospholipids with different head-groups. By using interdigital electrodes (IEs) as olfactory sensors (OSs), we measured the responses of the Ifs coated with these seven different lipid membranes to four alcohol vapors in a gas flow system. The Ifs voltage changes were recorded and the voltage-relative saturate vapor pressure (V-P/P degrees) curves were also plotted. It was found that with a methyl (-CH3) placed at the C-8 position in the 18-carbon chain, the olfactory responses could be improved about ten times and with conjugated double bonds (C=C) in the long chains, the sensitivity could be increased by 3 similar to 4 orders of magnitude. As to head-groups, choline is preferred over ethanolamine and serine in phospholipid structures in terms of high olfactory sensitivity: These results are expected to be useful in further designing and manufacturing lipid-mimicking OSs. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.
Resumo:
Bilayer lipid membranes ( BLM) formed from didode-cyldimethylammonium bromide were made on the freshly exposed surface of a glassy carbon (GC) and were demonstrated by the ac impedance spectroscopy. The ion channels of membrane properties induced by PF6- were studied by the cyclic voltammetric methods. Experimental results indicated that the ion channel of BLM was open in the presence of the PF6- due to the interaction of PF6- with the BLM, while it was switched off in the absence of PF6-. Because the ion channel behavior was affected by the concentration of PF6-, a sensor for PF6- can be developed.