21 resultados para LATE PLEISTOCENE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Climatic oscillations during the Pleistocene ice ages produced great changes in species' geographical distribution and abundance, which could be expected to have genetic consequences. Living in the temperate upwelling zones of the northwestern Pacific, Ja
Resumo:
随着全球环境的变化,人们迫切的希望了解整个地球环境的变化过程、规律和未来发展的趋势。对地质历史时期发生过的环境事件的了解,能为我们研究现在的和预测未来的环境变化提供有价值的资料。 孢粉分析作为一种古环境的代用指标,在恢复古植被与古气候方面起着不可替代的作用。而精确的孢粉分析建立在对现代花粉与当地植被的关系正确的认识基础上,由此才可以更准确地提取地层中的花粉所蕴含的植被和环境信息。 云南省地理位置较特殊,地貌复杂,气候类型多样,与之对应的植物种类多样性丰富,植被类型多样。本项研究选择云南省南部和西部地区作为研究地点,采集表土、地表苔藓、蜘蛛网、树皮和树上地衣苔藓五种天然孢粉捕捉器来研究现代花粉与当地植被的关系,为认识现代花粉雨提供新的研究思路。同时,我们在滇西北选择拉市海、文海、哈里谷和属都湖这四个高原湖泊来研究晚更新世以来滇西北地区植被演替和气候变化,为云南历史时期气候变化提供新的研究资料,同时也为全面认识晚更新世以来的气候变化提供新的证据。研究结果如下: 1. 现代花粉雨与当地植被关系的研究 对云南省西北部、中部和南部采集的19个蜘蛛网样品分析得出:云南省西北部样品中共鉴定20个孢粉类型,分属于16个科;云南省中部样品中共鉴定28个类型,分属于23个科;在云南省南部勐腊县采集的样品中共鉴定28个类型,分属于25个科;在望天树北京植物园中采集的样品共鉴定38个类型,分属于34个科;在西双版纳北京植物园中采集的样品中共有11个类型,分属于10个科。结果表明:蜘蛛网样品中分析出的孢粉类型反映了云南省从南到北不同的植被类型,说明蜘蛛网可以作为一种天然孢粉捕捉器来进行现代花粉雨的研究。 同时,在云南西北部文笔水库采集的五种天然孢粉捕捉器(表土、地表苔藓、树皮、蜘蛛网、树上地衣和苔藓)进行了对比研究。结果表明:表土所得的孢粉中木本植物花粉的百分含量为90.5-96%,远大于地表苔藓(53.1-81.7%)、蜘蛛网(61.7%)、树皮(53.8%)和树上地衣、苔藓(50-53.6%)所获得的木本植物花粉的百分含量。与当地植被进行对比结果表明:这五种天然孢粉捕捉器中,表土、地表苔藓和蜘蛛网比树皮和树上地衣、苔藓能更好的反映当地的植被。 2. 滇西北地区晚更新世以来植被演替与气候变化 在过去2, 5000年左右的地质历史时期,滇西北地区植被和气候变化大致经历了以下三个发展阶段。 (1) 2, 5381 B.P—1, 9335 B.P.:属都湖地区(海拔:3620m)主要是以蓼科植物为主的草甸植被,气候寒冷湿润。 (2) 1, 9335 B.P.—1, 2426 B.P.:属都湖地区是以藜科或蒿属为主的草甸植被,气候从湿润过渡到干旱;而在海拔稍低的文海地区(海拔3080m),主要是阔叶栎林或针阔混交林,气候温凉略湿到寒冷干旱。 (3) 1, 2426 B.P.—至今:属都湖地区是以蓼科为主的草甸植被,气候仍寒冷湿润;海拔稍低的哈里谷(海拔3277m)是以松和冷杉为主的针叶林,气候冷干;文海地区的植被逐渐演替为以松和冷杉为主的针阔叶混交林,但栎属花粉的含量远高于哈里谷地区,说明当时文海的气温虽然低,却比哈里谷稍高;而海拔更低的拉市海(海拔2440m)则是以松为主的针叶林,气候比其他几个地区温暖。 在全新世气候最适宜期(约8000 B.P.以来),哈里谷是以栎和松为主的针阔混交林;文海是以松为主的针阔混交林;而拉市海是以松和蕨类植物为主。说明随着海拔的升高(从拉市海到属都湖),温度逐渐下降,植被类型也由暖性针叶林过渡到针阔混交林再到草甸。 从6000 B.P.至今,文海和哈里谷植被在这一阶段都是以松和冷杉为主的暗针叶林,少量混生一些阔叶类植物,气候变得冷湿;属都湖则仍是以蓼科为主的草甸,气候变得更加寒冷。 研究证明:滇西北地区总的气候变化趋势与全球变化规律基本一致,在1,1805—9990 B.P.期间发生新仙女木事件,在8000B.P.以来,气候变得温暖湿润,为全新世气候最适宜期。此后,气候逐渐变得接近现代。
Resumo:
About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to same extent.
Resumo:
The origins and phylogenetic patterns were assessed for G. przewalskii and G. eckloni by analyzing the complete mtDNA cytochrome b gene sequence (1140bp). Phylogenetic analyses further supported that there were three mtDNA lineages (A-C) identified in G. przewalskii and G. eckloni, demonstrating that outer rakers of the first gill have little significance in the phylogeny of the Gymnocypris fishes. The network established showed that G. eckloni of the Yellow River specific haplotype A1 was a founder and it radiated all haplotypes of G. przewalskii which suggested G. przewalskii might only originate from one of two maternals of G. eckloni from the Yellow River. Fs test and mismatch analysis showed at least two expansion events in the population of G. przewalskii about 0.2734 Ma and 0.0658 Ma, while G. eckloni from Qaidam Basin could have experienced severe bottleneck effect about 0.0693 Ma. The population expansion was detected in subclades A1 and A21 with the most recent common ancestor (TMRCA) about 0.2308 +/- 0.01 Ma and 0.1319 +/- 0.015 Ma, respectively, which were within the geological age range of "Gonghe Movement" event that caused the separation of Lake Qinghai from the upper Yellow River. These results suggested the effect of the fish diversification by rapid uplift of the Qinghai-Tibetan Plateau in the Late Pleistocene.
Resumo:
In Asia, especially in China, our knowledge of the distribution of testate amoebae is still limited. In this paper, the geographical distribution of testate amoebae in Tibetan Plateau and northwestern Yunnan Plateau, southwest China and their relationships with the climatic factors have been studied. We found testate amoebae shifted in the most dominant species and increased in species (or genus) richness from northwest to southeast. Further, the linear regression analyses revealed that both species richness and genus richness have higher positive correlations with the mean temperature of the warmest month and annual mean precipitation as contrasted with the mean altitude, which showed weak negative correlation. This indicates that the temperature and precipitation are more significant influences on the richness than the altitude. The cluster analysis based on the community structure, defined by Sorenson's coefficient matrix, suggested four groups from the 10 physiographical regions. This geographical distribution pattern was also closely related with the climatic regionalization. The present climatic regionalization pattern of the study area originated from the uplift of Tibetan Plateau and mainly occurred in or after the late Pleistocene. Therefore, the geographical distribution of testate amoebae in our study area may have experienced complicated and drastic changes corresponding to the variation of the climate caused by the geological events.
Resumo:
Inferring how the Pleistocene climate oscillations have repopulated the extant population structure of Chondrus crispus Stackh. in the North Atlantic Ocean is important both for our understanding of the glacial episode promoting diversification and for the conservation and development of marine organisms. C. crispus is an ecologically and commercially important red seaweed with broad distributions in the North Atlantic. Here, we employed both partial mtDNA Cox1 and nrDNA internal transcribed spacer region 2 (ITS2) sequences to explore the genetic structure of 17 C. crispus populations from this area. Twenty-eight and 30 haplotypes were inferred from these two markers, respectively. Analysis of molecular variance (AMOVA) and of the population statistic Theta(ST) not only revealed significant genetic structure within C. crispus populations but also detected significant levels of genetic subdivision among and within populations in the North Atlantic. On the basis of high haplotype diversity and the presence of endemic haplotypes, we postulate that C. crispus had survived in Pleistocene glacial refugia in the northeast Atlantic, such as the English Channel and the northwestern Iberian Peninsula. We also hypothesize that C. crispus from the English Channel refugium repopulated most of northeastern Europe and recolonized northeastern North America in the Late Pleistocene. The observed phylogeographic pattern of C. crispus populations is in agreement with a scenario in which severe Quaternary glaciations influenced the genetic structure of North Atlantic marine organisms with contiguous population expansion and locally restricted gene flow coupled with a transatlantic dispersal in the Late Pleistocene.
Resumo:
The population genetic structure of the crimson snapper Lutjanus erythropterus in East Asia was examined with a 427-bp hypervariable portion of the mtDNA control region. A total of 262 samples were collected and 75 haplotypes were obtained. Neutrality tests (Tajima's and Fu's) suggested that Lutjanus erythropterus in East Asia had experienced a bottleneck followed by population expansion since the late Pleistocene. Despite the low phylogeographic structures in mtDNA haplotypes, a hierarchical examination of populations in 11 localities from four geographical regions using analysis of molecular variance (AMOVA) indicated significant genetic differentiation among regions (Phi(CT) = 0.08564, p < 0.01). Limited gene flow between the eastern region (including a locality in the western Pacific Ocean and two localities in the East Sea) and three geographic regions of the South China Sea largely contributed to the genetic subdivision. However, comparisons among three geographic regions of the South China Sea showed little to no genetic difference. Populations of Lutjanus erythropterus in East Asia are inferred to be divided into two major groups: an eastern group, including populations of the western Pacific Ocean and the East Sea, and a South China Sea group, consisting of populations from northern Malaysia to South China. The results suggest that fishery management should reflect the genetic differentiation and diversity in East Asia. (c) 2006 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Eight sporopollen zones have been divided based on the results of high-resolution sporopollen analysis of Core B10 in the southern Yellow Sea. Based on the results along with C-14 datings and the subbottom profiling data, climatic and environmental changes since the last stage of late Pleistocene are discussed. The main conclusions are drawn as follows: (1) the vegetation evolved in the process of coniferous forest-grassland containing broad-leaved treesconiferous and broad-leaved mixed forest --> coniferous and broad-leaved mixed forest-grassland prevailed by coniferous trees --> coniferous and broad-leaved mixed forest-grassland containing evergreen broad-leaved trees- coniferous and broad-leaved mixed forest-grassland prevailed by broad-leaved trees-deciduous broad-leaved forest-meadow containing evergreen broad-leaved trees- coniferous and broadleaved mixed forest-grassland prevailed by broad-leaved trees- coniferous and broad-leaved mixed forest containing evergreen broad-leaved trees; (2) eight stages of climate changes are identified as the cold and dry stage, the temperate and wet stage, the cold and dry stage, the warm and dry stage, the temperate and wet stage, the hot and dry stage, the temperate and dry stage, then the warm and dry stage in turn; (3) the sedimentary environment developed from land, to littoral zone, to land again, then to shore-neritic zone; and (4) the Yellow Sea Warm Current formed during early-Holocene rather than Atlantic stage.