3 resultados para Kurt Spang
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
During the Last Glacial Maximum, ice sheets covered large areas in northern latitudes, and global temperatures were significantly lower than today. But few direct estimates exist of the volume of the ice sheets, or the timing and rates of change during their advance and retreat. Here we analyze four distinct sediment facies in the shallow, tectonically stable Bonaparte Gulf, Australia - each of which is characteristic of a distinct range in sea level - to estimate the maximum volume of land-based ice during the last glaciation and the timing of the initial melting phase. We use faunal assemblages and preservation status of the sediments to distinguish open marine, shallow marine, marginal marine and brackish conditions, and estimate the timing and the mass of the ice sheets using radiocarbon dating and glacio-hydroisostatic modelling. Our results indicate that from at least 22,000 to 19,000 (calendar) years before present, land-based ice volume was at its maximum, exceeding today's grounded ice sheets by 52.5 x 10 exp 6 cu km. A rapid decrease in ice volume by about 10 percent within a few hundred years terminated the Last Glacial Maximum at 19,000 +/- 250 years.
Resumo:
The impact of transient wind events on an established zooplankton community was observed during a, field survey in a, coastal region off northern Norway in May 2002. A transient wind event induced a coastal jet/filament intrusion of warm, saline water into our survey area where a semi-permanent eddy was present. There was an abrupt change in zooplankton community structure within 4-7 days of the wind event, with a change in the size structure, an increase in lower size classes less than 1 mm in equivalent spherical diameter (ESD) and a decrease in larger size classes greater than 1.5 mm in ESD. The slope of zooplankton biovolume spectra changed from -0.6 to -0.8, consistent with the size shifting towards smaller size classes. This study shows that even well established zooplankton communities are susceptible to restructuring during transient wind events, and in particular when wind forcing induces horizontal currents or filaments.
Resumo:
深海机器人推进电机系统中出现的混沌现象,直接影响深海机器人稳定性、可靠性和安全性.采用自适应控制技术对其混沌行为加以控制,对该方法的可行性和有效性进行了证明.设计和构造了易于工程实施的混沌控制器,用于深海机器人推进电机系统混沌控制.仿真实验表明,推进电机系统在自适应控制器的作用下可迅速脱离混沌状态,并进入持续稳定状态,控制效果明显.可以为深海机器人推进电机系统中可能出现的混沌运行行为提供控制策略和抑制预案,有利于混沌控制嵌入软件的开发,确保深海机器人稳定、可靠和安全地运行,具有一定的实用价值.