1 resultado para Knowledge based urban development
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Population data which collected and saved according to administrative region is a kind of statistical data. As a traditional method of spatial data expression, average distribution in every administrative region brings population data on a low spatial and temporal precision. Now, an accurate population data with high spatial resolution is becoming more and more important in regional planning, environment protection, policy making and rural-urban development. Spatial distribution of population data is becoming more important in GIS study area. In this article, the author reviewed the progress of research on spatial distribution of population. Under the support of GIS, correlative geographical theories and Grid data model, Remote Sensing data, terrain data, traffic data, river data, resident data, and social economic statistic were applied to calculate the spatial distribution of population in Fujian province, which includes following parts: (1) Simulating of boundary at township level. Based on access cost index, land use data, traffic data, river data, DEM, and correlative social economic statistic data, the access cost surface in study area was constructed. Supported by the lowest cost path query and weighted Voronoi diagram, DVT model (Demarcation of Villages and Towns) was established to simulate the boundary at township level in Fujian province. (2) Modeling of population spatial distribution. Based on the knowledge in geography, seven impact factors, such as land use, altitude, slope, residential area, railway, road, and river were chosen as the parameters in this study. Under the support of GIS, the relations of population distribution to these impact factors were analyzed quantificationally, and the coefficients of population density on pixel scale were calculated. Last, the model of population spatial distribution at township level was established through multiplicative fusion of population density coefficients and simulated boundary of towns. (3) Error test and analysis of population spatial distribution base on modeling. The author not only analyzed the numerical character of modeling error, but also its spatial distribution. The reasons of error were discussed.