71 resultados para KX observer
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
按着4f~6(~7F_J)和5dΓ_1耦合模型,提出了计算KX(X=Cl,Br,I)晶体中Eu~(2+)离子4f~65d能级的方法,导出了能级的参数表达式,并进行了数值计算,计算结果和实验符合较好.
Resumo:
An improved two-dimensional space-time conservation element and solution element ( CE/ SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman-Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.
Resumo:
The stationary two-dimensional (x, z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V∞) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x, t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V∞, into a stationary two-dimensional (x, z) near wake flow seen by an observer moving with the body velocity (V∞). The initial value problem of the K-dV equation in (x, t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements.
Resumo:
It is well-known that cone effect or focus anisoplanatism is produced by the limited distance of a laser guide star (LGS) which is created within the Earth atmosphere and consequently located at a finite distance from the observer. In this paper, the cone effect of the LGS for different vertical profiles of the refractive index structure constant Cn2 is numerically investigated by using a revised computer program of atmospheric propagation of optical wave and an adaptive optics (AO) system including dynamic control process. According to the practice, the overall tilt for the tilt-correction mirror is obtained from a natural star and the aberrated wavefront for phase correction of the deformable mirror is obtained from a LGS in our numerical simulation. It is surprisingly found that the effect of altitude of the LGS on the AO phase compensation effectiveness by using the commonly-available vertical profiles of Cn2 and the lateral wind speed in the atmosphere is relatively weak, and the cone effect for some Cn2 profiles is even negligible. It is found that the cone effect does not have obvious relationship with the turbulence strength, however, it depends on the vertical distribution profile of Cn 2 apparently. On the other hand, the cone effect depends on the vertical distribution of the lateral wind speed as well. In comparison to a longer wavelength, the cone effect becomes more obvious in the case of a shorter wavelength. In all cases concerned in this paper, an AO system by using a sodium guide star has almost same phase compensation effectiveness as that by using the astronomical target itself as a beacon. Effect of dynamic control process in an AO system on the cone effect is studied in this paper for the first time within our knowledge.
Resumo:
In this paper, a new definition of SE and CE, which is based on the hexahedron mesh and simpler than Chang's original CE/SE method (the space-time Conservation Element and Solution Element method), is proposed and an improved CE/SE scheme is constructed. Furthermore, the improved CE/SE scheme is extended in order to solve the elastic-plastic flow problems. The hybrid particle level set method is used for tracing the interfaces of materials. Proper boundary conditions are presented in interface tracking. Two high-velocity impact problems are simulated numerically and the computational results are carefully compared with the experimental data, as well as the results from other literature and LS-DYNA software. The comparisons show that the computational scheme developed currently is clear in physical concept, easy to be implemented and high accurate and efficient for the problems considered. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A new structure of solution elements and conservation elements based on rectangular mesh was pro- posed and an improved space-time conservation element and solution element (CE/SE) scheme with sec- ond-order accuracy was constructed. Furthermore, the application of improved CE/SE scheme was extended to detonation simulation. Three models were used for chemical reaction in gaseous detonation. And a two-fluid model was used for two-phase (gas–droplet) detonation. Shock reflections were simu- lated by the improved CE/SE scheme and the numerical results were compared with those obtained by other different numerical schemes. Gaseous and gas–droplet planar detonations were simulated and the numerical results were carefully compared with the experimental data and theoretical results based on C–J theory. Mach reflection of a cellular detonation was also simulated, and the numerical cellular pat- terns were compared with experimental ones. Comparisons show that the improved CE/SE scheme is clear in physical concept, easy to be implemented and high accurate for above-mentioned problems.
Resumo:
The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.
Resumo:
The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3∘ wedge. The planar and cellular detonation reflections over 45∘–55∘ wedges are also simulated. When the cellular detonation wave is over a 50∘ wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range.
Resumo:
Background: Previously reported evidence indicates that pigs were independently domesticated in multiple places throughout the world. However, a detailed picture of the origin and dispersal of domestic pigs in East Asia has not yet been reported. Results:
Resumo:
Simultaneous tone-tone masking in conjunction with the envelope-following response (EFR) recording was used to obtain tuning curves in porpoises Phocoena phocoena and Neophocaena phocaenoides asiaeorientalis. The EFR was evoked by amplitude-modulated probes with a modulation rate of 1000 Hz and carrier frequencies from 22.5 to 140 kHz. Equivalent rectangular quality Q(ERB) of the obtained tuning curves varied from 8.3-8.6 at lower (22.5-32 kHz) probe frequencies to 44.8-47.4 at high (128-140 kHz) frequencies. The QERB dependence on probe frequency could be approximated by regression lines with a slope of 0.83 to 0.86 in log-log scale., which corresponded to almost frequency-proportional quality and almost constant bandwidth of 34 kHz. Thus, the frequency representation in the porpoise auditory system is much closer to a constant-bandwidth rather that to a constant-quality manner. (c) 2006 Acoustical Society of America.
Resumo:
A preliminary study was carried out to investigate diurnal changes of behavior of three, one adult mate, one adult female, and one juvenile female, Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) in captivity. The respiration and behavior of the porpoises were recorded for 222 hr across 42 days. Behavioral data were recorded for eight general categories: aerial display and fast swimming, begging for fish, playing, nonsexual socializing, sexual behavior, resting, rubbing, and miscellaneous (i.e., other behaviors not included in the above categories). Each behavioral category was scored using one-zero sampling with 10-min intervals. The adult male showed shorter mean respiratory intervals at night (19:00-7:00 h), whereas the mean respiratory intervals of the females were shorter during the day (7:00-19:00 h). Begging for fish of all individuals, playing of the juvenile female, nonsexual socializing, and miscellaneous behavior of the adult female and resting of the male were observed more easily in the day, and aerial display and fast swimming of the adults and resting of the females were observed more easily at night. No significant diurnal difference was found, however, in the remaining categories of each individual. Each of the three porpoises therefore showed a distinct diurnal pattern, but none was obviously more active in the daytime than during the nighttime. Results suggest that daytime-only feeding schedules may be insufficient to meet the energetic needs of marine mammals that show a 24-hr activity cycle, and that nighttime feeding may be a worthwhile addition to husbandry routines.
Resumo:
The signals of dolphins and porpoises often exhibit a multi-pulse structure. Here, echolocation signal recordings were made from four geometrically distinct positions of seven Yangtze finless porpoises temporarily housed in a relatively small, enclosed area. Some clicks demonstrated double-pulse, and others multi-pulse, structure. The interpulse intervals between the first and second pulse of the double- and multi-pulse clicks were significantly different among data from the four different positions (p < 0.01, one-way ANOVA). These results indicate that the interpulse interval and structure of the double- and multi-pulse echolocation signals depend on the hydrophone geometry of the animal, and that the double- and multi-pulse structure of echolocation signals in Yangtze finless porpoise is not caused by the phonating porpoise itself, but by the multipath propagation of the signal. Time delays in the 180 degrees phase-shifted surface reflection pulse and the nonphase-shifted bottom reflection pulse of the multi-pulse structures, relative to the direct signal, can be used to calculate the distance to a phonating animal. (c) 2005 Acoustical Society of America.
Resumo:
Background. As the sole freshwater subspecies of finless porpoise (Neophocaena phocaenoides), the Yangtze finless porpoise (N. p. asiaeorientalis) lives only in the middle and lower reaches of the Yangtze River and its appended Poyang and Dongting Lakes. As a result of human activity on the river, including over and illegal fishing, pollution, transportation and dam construction, the population of Yangtze finless porpoises has been steadily and rapidly decreasing during the past several decades, which leads the animal to be endangered. Methods. For saving this unique animal from extinction, three corresponding measures, in situ conservation, ex situ conservation, and intensifying breeding research in captivity, were proposed and have been implemented since the 1980s. Results. After successfully rearing the animals in captivity for almost nine years, the first Yangtze finless porpoise was successfully born in captivity on July 5, 2005. The calf is male, with a body length of 69 cm. This is the first freshwater cetacean ever born in captivity. Conclusion. The successful birth of this calf confirms that it is possible to breed the Yangtze finless porpoise in captivity. Furthermore, this will greatly benefit the conservation efforts, and also greatly bolster our on-going efforts to study the reproductive biology of these animals. Recommendation. More studies and efforts are expected to establish a sustainable, captive colony of the Yangtze finless porpoise, which will not only greatly expand our knowledge about the reproduction biology of this animal, but also help to redeem the wild population through a careful yearly 'soft releasing' process.
Resumo:
The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar. signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation. (C) 2005 Acoustical Society of America.