10 resultados para KINASE-C
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) belongs to the eIF2 alpha kinase family and plays a critical role in interferon (IFN)-mediated antiviral response. Recently, in Japanese flounder (Paralichthys olivaceus), a PKR gene has been identified. In this study, we showed that PoPKR localized to the cytoplasm, and the dsRNA-binding motifs (dsRBMs) played a determinative role in protein localization. In cultured FEC cells, PoPKR was detected at a low level of constitutive expression but was highly induced after treatment with UV-inactivated grass carp hemorrhagic virus, active SMRV and Poly I:C although with different expression kinetics. In flounder, PoPKR was ubiquitously distributed in all tested tissues, and SMRV infection resulted in significant upregulation at mRNA and protein levels. In order to reveal the role of PoPKR in host antiviral response, its expression upon exposure to various inducers was characterized and further compared with that of PoHRI, which is another eIF2 alpha kinase of flounder. Interestingly, expression comparison revealed that all inducers stimulated upregulation of PoHRI in cultured flounder embryonic cells and fish, with a similar kinetics to PoPKR but to a less extent. These results suggest that, during antiviral immune response, both flounder eIF2 alpha kinases might play similar roles and that PoPKR is the predominant kinase. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Sertoli cells play a central role in the control and maintenance of spermatogenesis. Isolated Sertoli cells of mouse and rat testes have been shown to secrete plasminogen activator (PA) and a plasminogen activator inhibitor type-1 (PAI-1) in culture. In this study, we have investigated the hormonal regulation of PA and PAI-1 activities in cultured monkey Sertoli cells. Sertoli cells (5x10(5) cells/well) isolated from infant rhesus monkey testes were preincubated at 35 degrees C for 16 h in 24-well plates precoated with poly(D-lysine) (5 mu g/cm(2)) in 0.5 mi McCoy's 5a medium containing 5% of fetal calf serum and further incubated for 48 h in 0.5 mi serum-free medium with or without various hormones or other compounds, PA as well as PAI-1 activities in the conditioned media were assayed by fibrin overlay and reverse fibrin autography techniques respectively. The Sertoli cells in vitro secreted only tissue-type PA (tPA), no detectable amount of urokinase-type PA (uPA) could be observed, Monkey Sertoli cells were also capable of secreting PAI-1, Immunocytochemical studies indicated that both tPA and PAI-1 positive staining localized in the Sertoli cells, spermatids and residual bodies of the seminiferous epithelium; Northern blot analysis further confirmed the presence of both tPA and PAI-1 mRNA in monkey Sertoli cells. Addition of follicle-stimulating hormone (FSH) or cyclic adenosine monophosphate (cAMP) derivatives or cAMP-generating agents and gonadotrophin-releasing hormone (GnRH) agonist or phorbol ester (PMA) to the cell culture significantly increased tPA activity. PAI-1 activity in the culture was also enhanced by these reagents except 8-bromo-dibutyryl-cAMP, forskolin and 3-isobutyl-1-methylxanthin (MIX) which greatly stimulated tPA activity, whereas decreased PAI-1 activity, implying that neutralization of PAI-1 activity by tile high level of tPA in the conditioned media may occur. These data suggest that increased intracellular signals which activate protein kinase A (PKA), or protein kinase C (PKC) can modulate Sertoli cell tPA and PAI-1 activities, The concomitant induction of PA and PAI-1 by the same reagents in the Sertoli cells may reflect a finely tuned regulatory mechanism in which PAI-1 could limit the excession of the proteolysis.
Resumo:
To gain an insight into the function of shrimp lymphoid organ at protein level, we analyzed the proteome of lymphoid organ in healthy Chinese shrimp Fenneropenaeus chinensis (F. chinensis) through two-dimensional gel electrophoresis (2-DE) based proteomic approach. A total of 95 spots representing 75 protein entries were identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) with both online and in-house database. According to Gene Ontology (GO) annotation of biological process, the identified proteins were classified into 13 categories. Among them, approximately 36% of proteins related to cytoskeleton are noticeable. Then, a comparative proteomic approach was employed to investigate the differentially expressed proteins in lymphoid organ of Vibrio anguillarum-challenged F. chinensis. At 24 h post-injection (hpi), 17 differentially expressed protein spots were successfully identified, including 4 up-regulated protein spots (represent 4 proteins: cathepsin L protein similar to squid CG16901-PC, protein kinase C and protein similar to T-complex Chaperonin 5 CG8439-PA), and 13 down-regulated protein spots (represent 9 proteins: actin, beta-actin, cytoplasmic actin CyII, alpha tubulin, beta tubulin, protein similar to proteasome delta, vacuolar ATP synthase subunit B, elongation factor 2, carboxypeptidase B). These data may help us to understand the function of lymphoid organ and the molecular immune mechanism of shrimp responsive to pathogen infection. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The cDNA of Chlamydomonas reinhardtii SE encoding hydrogenase (HydA2) was obtained from the total RNA of C reinhardtii SE by RT-PCR. The DNA of hydrogenase was amplified by PCR from the genomic DNA of C reinhardtii SE. The cDNA and DNA of hydrogenase were sequenced, respectively. The structure of hydrogenase gene was analyzed by biology software. The open reading frame predicts that the hydrogenase is composed of 3584 bp encoding 505 amino acids in length with a predicted M.W. of 53.69 kDa. Ten exons (including 1518 bp) and nine introns (including 2066 bp) have been found in the hydrogenase, and there were two potential N-glycosylate sites, eight protein kinase C phosphorylation site, eight casein kinase H phosphorylation site and one sulphorylation in the sequence. The theory pI was 6.15. Total number of negatively charged residues (Asp + Glu) and positively charged residues (Arg + Lys) were 55 and 61, respectively. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In cyanobacteria, the isiA gene is required for cell adaptation to oxidative damage caused by the absence of iron. We show here that a putative Ser/Thr kinase gene, pkn22 (alr2052), is activated by iron deficiency and oxidative damage in Anabaena sp. PCC 7120. A pkn22 insertion mutant is unable to grow when iron is limiting. pkn22 regulates the expression of isiA (encoding CP43') but not of isiB (encoding flavodoxin) and psbC (CP43). Fluorescence measurement at 77 K reveals the absence of the typical signature of CP43' associated with photosystem I in the mutant under iron-limiting conditions. We propose that Pkn22 is required for the function of isiA/CP43' and constitutes a regulatory element necessary for stress response. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
本文研究了HeLa细胞经过12C6+离子束辐照之后的DNA损伤效应,及辐照后p53激活的分子机制。运用中性单细胞电泳技术,检测了HeLa细胞经过4Gy 12C6+离子束辐照间隔0、3、6和12h之后DNA的损伤情况,及0.5、1、2和4Gy 12C6+离子束辐照后即时的DNA损伤情况。同时运用细胞生长实时监测仪监测了HeLa细胞在经过0、0.5和1Gy 12C6+离子束辐照之后的生长变化,并运用AO/EB双染检测了辐照细胞24h后的凋亡情况。另外,利用8mmol/L的咖啡因[抑制ATM(ataxia-telangiectasia,mutated)和ATR(ATM and Rad3-related kinase)]和20μmol/L的wortmannin[抑制ATM和DNA-PK(DNA-dependent protein kinase)]处理HeLa细胞后再进行1Gy 12C6+离子束辐照,通过westernblot检测p53的表达。结果显示,12C6+离子束辐照可造成HeLa细胞的DNA损伤,损伤随剂量升高而升高但随测定间隔时间降低,诱导HeLa细胞发生凋亡;而且辐照后p53表达升高。结果证明12C6+离子束辐照可造成HeLa细胞的DNA损伤并诱导损伤修复及凋亡等效应,损伤效应相关因子p53被激活,并且激活依赖于ATM。
Resumo:
Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. in this paper, the full-length cDNA of AI( was cloned from shrimp, Litopenaeus vannamei by using RT-PCR and RACE PCR. It was 1446 bp encoding 356 amino acids, and belongs to the conserved phosphagen kinase family. The quantitative real-time reverse transcription PCR analysis revealed a broad expression of AK with the highest expression in the muscle and the lowest in the skin. The expression of AK after challenge with LIPS was tested in hemocytes and muscle, which indicated that the two peak values were 6.2 times (at 3 h) and 10.14 times (at 24 h) in the hemocytes compared with the control values, respectively (P < 0.05), while the highest expression of AK was 41 times (at 24 h) in the muscle compared with the control (P < 0.05). In addition, AK was expressed in Eschetichia coli by prokaryotic expression plasmid pGEX-4T-2. The recombinant protein was expressed as glutathione s-transferase (GST) arginine kinase (GST-AK) fusion protein, which was purified by affinity chromatography using Glutathione Sepharose 4B. After cleavage from GST by using a site-specific protease, the recombinant protein was identified by ESI-MS and showed AK activity. After treatment with 10 mM ATP, the enzyme activity significantly increased. However, the enzyme activity was inhibited by 10 mM alpha-ketoglutarate, 50 mM glucose and 200 mM ATP. This research suggested that AK might play an important role in the coupling of energy production and utilization and the immune response in shrimps. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Arginine kinase (AK) was previously reported as a phosphagen-ATP phosphotransferase found in invertebrates. In this study, an 1184 bp cDNA was cloned and sequenced. It contained an open reading frame of 1068 bp that coded for 356 deduced amino acids of AK in Fenneropenaeus chinensis. The calculated molecular mass of AK is 40129.73 Da and pI is 5.92. The predicted protein showed a high level of identity to known AK in invertebrates and creatine kinase from vertebrates, which belong to a conserved family of ATP:guanidino phospho-transferases. In addition, AK protein in plasma of F. chinensis was identified using two-dimensional electrophoresis (2DE) and electrospray ionization mass spectrometry (ESI-MS) according to the calculated molecular mass and pI. AK was significantly decreased in the plasma of F. chinensis at 45 min and recovered at 3 It after laminarin injection as confirmed by 2DE and ESI-MS. The results showed that AK was one of the most significantly changed proteins on two-dimensional gel in the plasma proteins of F. chinensis at 45 min and 3 It after simulation. (c) 2005 Elsevier Ltd. All rights reserved.