89 resultados para KELVIN-HELMHOLTZ INSTABILITY

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文用导数展开法对液体薄层与亚音速气流接壤时的界面稳定性作非线性分析.文中考虑了液体的表面张力与体积力,故非线性的Rayleigh-Taylor不稳定性可作为特例而导出;液体与气体均不计粘性.虽然Nayfeh曾算过这一情况,但其三阶方程有遗漏(如213页的式(2.29)).同时解也不自洽(如其一阶解(2.31)并不满足他的初始条件(2.20)),此外,在截止波数附近,对行波他并未考虑.本文弥补了这些,并得出了新的结论.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正> Tokamak中的一个重要问题是加热。中性束注入加热是加热的一个有效手段,它使美国PLT上的离子温度达到7.1KeV.但PLT上的中性束注入的不对称性引起等离子体的快速环向旋转,转速可达1×10~7厘米/秒。1979年5月Suckewer等在PLT上测量了速度分布。 在具有速度剪切进行旋转的等离子体中,会不会形成新的磁流体力学不稳定性?1980年

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high order difference scheme is used to simulate the spatially developing compressible axisymmetric jet. The results show that the Kelvin-Helmholtz instability appears first when the jet loses its stability, and then with development of jet the increase in nonlinear effects leads to the secondary instability and the formation of the streamwise vortices. The evolution of the three-dimensional coherent structure is presented. The computed results verify that in axisymmetric jet the secondary instability and formation of the streamwise vortices are the important physical mechanism of enhancing the flow mixing and transition occurring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, interfacial waves in three-layer stratified fluid with background current are investigated using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory, and the Kelvin-Helmholtz instability of interfacial waves is studied. As expected, for three-layer stratified fluid with background current, the first-order asymptotic solutions (linear wave solutions), dispersion relation and the second-order asymptotic solutions derived depend on not only the depths and densities of the three-layer fluid but also the background current of the fluids, and the second-order Stokes wave solutions of the associated elevations of the interfacial waves describe not only the second-order nonlinear wave-wave interactions between the interfacial waves but also the second-order nonlinear interactions between the interfacial waves and currents. It is also noted that the solutions obtained from the present work include the theoretical results derived by Chen et al (2005) as a special case. It also shows that with the given wave number k (real number) the interfacial waves may show Kelvin-Helmholtz instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the generation of pulsed, high-speed liquid jets using the cumulation method. This work mainly includes (1) the design of the nozzle assembly, (2) the measurement of the jet velocity and (3) flow visualization of the injection sequences. The cumulation method can be briefly described as the liquid being accelerated first by the impact of a moving projectile and then further after it enters a converging section. The experimental results show that the cumulation method is useful in obtaining a liquid jet with high velocity. The flow visualization shows the roles of the Rayleigh-Taylor and Kelvin-Helmholtz instabilities in the breakup of the liquid depend on the jet diameter and the downstream distance. When the liquid jet front is far downstream from the nozzle exit, the jet is decelerated by air drag. Meanwhile, large coherent vortex structures are formed surrounding the jet. The liquid will break up totally by the action of these vortices. Experimental results showing the effect of the liquid volume on the jet velocity are also included in this paper. Finally, a method for measuring the jet velocity by cutting two carbon rods is examined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visualization results demonstrate the evolution of Kelvin-Helmholtz unstable waves into vortex pairing in a separated shear layer of a blunf circular. The results with acoustic excitation are quite different from that without acoustic excitation, and the phenomenon with excitation in a separated shear layer follows the rule of Devil s staircase, which always occurs in a non-linear dynamical system of two coupling vibrators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用高阶精度差分格式,求解二维可压缩N-S方程,直接数值模拟了可压缩平面混合流的二维拟序结构.给出了流动失稳,Kelvin-Helmholtz不稳定波的发展.展向大涡的卷起和相邻两涡卷对并,包括3次对并的发展过程.研究了平面混合流时-空的发展和可压缩效应对其发展的影响.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

<正> 近几年来,人们详细地研究过等离子体某些运动状态的不稳定性,如Rayleigh-Taylor不稳定性和Kelvin-Helmholtz不稳定性等等。本文先根据雪铲模型讨论收缩效应的运动不稳定性,其次指出,在径向运动情形下,稳定性不只和加速度有关,而且也和速度等其它因素有关,因此,它并不相当于平面情形的Rayleig-Taylor不稳定性。 1.收缩效应的运动不稳定性在雪铲模型里,如果假定在某时刻t_1出现径向、周向和轴向的微扰动γ,θ,z,并以初始时刻to的位置θo、Zo以及时刻t为自变量,则在假定(γ,θ,z)的形式为(γ(t),-iθ(t),-iz(t))eimθo+ikzσ之后,就可得到线性化的扰动方程(采用高斯单位)为:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用高精度差分方法对空间发展轴对称可压缩射流流场进行直接数值模拟,计算结果显示了射流失稳后首先出现Kelvin-Helmholtz非稳定特征,流动的进一步发展,非线性效应的增长导致轴对称涡环的二次失稳和流向涡的产生,并给出了拟序结构的三维演化过程,计算结果证实了轴对称射流中二闪失稳,流向涡的产生是增强流动混合及流动产生转捩的重要机制。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文研究了圆柱受限空间内的喷雾火焰嫩烧压力振荡的特性。为了更清楚地了解火焰的构造, 首先测量了火焰的温度场,在较大的一次风和二次风变化范围内, 测量了压力的振荡特性。结果表明,火焰的稳定是由回流区完成的, 在较小的一次风燃料当量比和中等的二次风量时, 振荡最强, 达到100Pa左右的量级,其频率为200-230Hz左右,分析表明燃烧室中的振荡是轴向驻波振荡。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis of instability of saturated soil is presented considering the simple shearing of a heat conducting thermo-visco-plastic material. It is shown that the instability is mainly the consequence of thermal softening which overcomes the strain hardening and the other type of instability is controlled by strain softening. The effects of other factors such as permeability to the instability are discussed in this paper.