5 resultados para Jet Propulsion Laboratory (U.S.)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用了双流体模型对JPL(Jet Propulsion Laboratory)喷管中气固两相流动以及超声速射流两相流动进行了数值模拟,并研究了可压缩两相流动中气相与颗粒的相互作用规律.自主开发的一般曲线坐标系下二维轴对称可压缩双流体程序Solve2D,对气相求解Navier-Stokes(N-S)方程组,采用k-ε湍流模型,颗粒相求解Euler方程组.对JPL喷管内的两相流场和湍流两相射流流场进行了数值模拟,研究了不同颗粒质量百分数以及不同颗粒直径时的气固两相流场的流动规律.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to measure ocean wave slope spectra using fully polarimetric synthetic aperture radar (POLSAR) data was developed without the need for a complex hydrodynamic modulation transform function. There is no explicit use of a hydrodynamic modulation transfer function. This function is not clearly known and is based on hydrodynamic assumptions. The method is different from those developed by Schuler and colleagues or Pottier but complements their methods. The results estimated from NASA Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) C-band polarimetric SAR data show that the ocean wavelength, wave direction, and significant wave height are in agreement with buoy measurements. The proposed method can be employed by future satellite missions such as RADARSAT-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Any waterway with one end closed and the other open is generally called a blind channel. The main flow tends to expand, separate, and cause circulation at the mouth of blind channels. The main flow continuously transfers momentum and sediment into the circulation region through the turbulent mixing region (TMR) between them, thus leading to a large amount of sediment deposition in the blind channels. This paper experimentally investigated the properties of the water flow and sediment diffusion in TMR, demonstrating that both water flow and sediment motion in TMR approximately coincide with a similar structure as in the free mixing layer induced by a jet. The similarity functions of flow velocity and sediment concentration are then assumed, based on observation, and the resulting calculation of these functions is substantially facilitated. For the kind of low velocity flow system of blind channels with a finite width, a simple formula for the sediment deposition rate in blind channels is established by analyzing the gradient of crosswise velocity and sediment concentration in TMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.