12 resultados para Jefferson lab
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An erratum is presented to correct the propagation loss of the freestanding optical fibers fabricated in glass chip. (c) 2006 Optical Society of America.
Resumo:
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
Resumo:
Electrowetting (EW) is an effective way to manipulate small volume liquid in micro- and nano-devices, for it can improve its wettability. Since the late 1990s, electrowetting-on-dielectric (EWOD) has been used widely in bio-MEMS, lab-on-a-chip, etc. Polydimethlsiloxane (PDMS) is extensively utilized as base materials in the fabrication of biomedical micro- and nano-devices. The properties of thin PDMS films used as dielectric layer in EW are studied in this paper. The experimental results show that the thin PDMS films exhibit good properties in EWOD. As to PDMS films with different thicknesses, a threshold voltage and a hysteresis were observed in the EIWOD experiments.
Resumo:
Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.
Resumo:
In this paper, we studied the role of vertical component Of Surface tension of a water droplet on the deformation of membranes and microcantilevers (MCLs) widely used in lab-on-a-chip and micro-and nano-electromechanical system (MEMS/NEMS). Firstly, a membrane made of a rubber-like material, poly(dimethylsiloxane) (PDMS), was considered. The deformation was investigated using the Mooney-Rivlin (MR) model and the linear elastic constitutive relation, respectively. By comparison between the numerical solutions with two different models, we found that the simple linear elastic model is accurate enough to describe such kind of problem, which would be quite convenient for engineering applications. Furthermore, based on small-deflection beam theory, the effect of a liquid droplet on the deflection of a MCL was also studied. The free-end deflection of the MCL was investigated by considering different cases like a cylindrical droplet, a spherical droplet centered on the MCL and a spherical droplet arbitrarily positioned on the MCL. Numerical simulations demonstrated that the deflection might not be neglected, and showed good agreement with our theoretical analyses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
A new dual simultaneous detector was developed for capillary electrophoresis microchip. Confocal laser-induced fluorescence (LIF) and moveable contactless conductivity detection (MCCD) were combined together for the first time. The two detection systems shared a common detection cell and could respond simultaneously. They were mutually independent and advantageous in analyses of mixtures containing organic and inorganic ions. The confocal LIF had high sensitivity and the MCCD could move along the separation channel and detect in different positions of the channel. The detection conditions of the dual detector were optimized. Rhodamine B was used to evaluate the performance of the dual detector. The limit of detection of the confocal LIF was < 5 nM, and that of the MCCD was 0.1 mu M. The dual detector had highly sensitivity and could offer response easily, rapidly and simultaneously.
Resumo:
A 120TW/36fs laser system based on Ti:sapphire chirped-pulse amplification (CPA) has been successfully established in our lab. The final four pass Ti:sapphire amplifier pumped by an energetic single-shot Nd:YAG-Nd:glass laser was designed and optimized. With 24J/8ns pump energy at 532 nm, 300 mJ/220 ps chirped pulse was amplified to 5.98 J in this amplifier, and a total saturated gain of similar to 20 was achieved. The focused intensity of compressed beam could reach to 10(20) W/cm(2) with the M-2 of similar to 2.0. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We report the fabrication of a novel surface-enhanced Raman scattering (SERS) substrate with a controllable enhancement factor (EF) using femtosecond laser direct writing on Ag+-doped phosphate glass followed by chemical plating at similar to 40 degrees C. Silver seeds were first photoreduced using a femtosecond laser in a laser-irradiated area and then transformed into silver nanoparticles of suitable size for SERS application in the subsequent chemical plating. Rhodamine 6G was used as a probing molecule to investigate the enhancement effect of a Raman signal on the substrate. Nearly homogenous enhancement of the Raman signal over the Substrate was achieved, and the EF of the substrate was controlled to some extent by adjusting fabrication parameters. Moreover, the ability of forming a SERS platform in an embedded microfluidic chamber would be of great use for establishing a compact lab-on-a-chip device based on Raman analysis.
Resumo:
设计了一个激光光斑实时监测与光路自动准直装置,能够实时监测激光光斑并自动准直激光输出方向。基于透镜成像原理,使用CCD探测器获得光斑的二维成像,并根据两点确定一条直线原理和使用压电陶瓷电动调整架实现光路自动准直;监测控制程序采用虚拟仪器开发软件Lab View编写,可以实时监测激光光斑模式与光斑位置抖动情况,并进行反馈控制。经测试,设计装置的调整精度达0.5μrad,反馈控制频率约1 Hz,完全可降低或消除抖动周期在1 s以上的光斑飘移。
Resumo:
We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.