23 resultados para Internal consistency
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixture. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasmas from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 × 1017 neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 × 1017 neutrons, with an accuracy of ±7%. The actual fusion amplification factor, QDT was about 0.15
Resumo:
Job Burnout has been a focus of the Occupational Stress Research. As a typical,helping occupation, teacher has attracted widely attention and researches in the areas of pedagogy and psychology. The special subgroup of teacher, headmasters who are the elites of the Basic Education, is ignored. The research about principals’ Job Burnout is nearly blank after analyzing related documents and information. With the development of the society, people pay more and more attention to the education and put more demands on the headmasters, especially middle-school principals. They are required not only to be good educators, who are equipped with all the inner qualities as a teacher, but also good managers. So the main purpose of this research was to compare the principal group with ordinary teacher group, and reveal underling factors, such as background variables and psychological protection variables. A representative sample of Wenzhou middle school principals sized 192 and a sample of middle school teacher sized 302 were sampled from various schools. The educational version of burnout inventory, self consistency scale, and interpersonal trust scale were administrated to the two samples, together with some demographic variables of interest. The applicability and equivalence of the three instruments used in this study were checked. Based on well-established reliability and cross-sample congruence of measures, the difference between principals and teachers was test. Then the contributing factors were analysis gradually. The five background variables were examined one by one in the two samples separately. A multiple covariance analysis was conducted to test whether there remained any difference between these two samples on the variables of interest. Regression analysis was used to further control the effect of self harmony and interpersonal trust to test the difference between two samples. Mediating analysis was conducted to build the relationship among the three constructs. The main results of the research were stated as following: 1. The internal consistency coefficients of all the scales were good, and no difference exited between the two groups. The measurement equivalence of three instruments was established well. The measures could be applied to and comparing the two samples. 2. The self-harmony, and interpersonal trust of principals were better than the ordinary middle-school teachers. Job Burnout of principals was significant lower than teachers. 3. Demographic variables like the gender, age groups, income levels, disricts, and the type of school, were important influencing factors. The difference patterns of the variables on these five variables in two samples had similarity and distinction. 4. After controlling the background variables, there remained significant difference between principals and teachers on the variables of interest. 5. Job Burnout negatively correlated with self-harmony and interpersonal trust. That is to say,the lower the degree of self-harmony and interpersonal are, the serious of the Job Burnout is, The correlation between the self-harmony and the interpersonal trust was positive. 6. After statistically controlling the background variables and psychological variables, there still exited significant difference between two groups of this study. Also, self harmony and interpersonal trust were significant protection predictors to different aspect of job burnout. 7. Mediating analysis was conducted to the residual score of the three constructs after controlling the five variables and group membership. Self harmony partially mediated the relationship between interpersonal trust and job burnout. That is, interpersonal trust had indirect effect to burnout mediated by self harmony, also had direct effect to burnout.
Resumo:
Stigma is defined as a sign of disgrace or discredit that sets a person apart from others. Stigmatized individuals had been significantly influenced by their group-based stigma. Through the methods of laboratory experiment and questionnaire surveys, the current study started with examining the attitudes of middle school students to the students with learning disabilities (LD), systemly explored the characteristics of perceived stigma and self-stigma of LD students, the mechanism that the influences of stigma on students with LD, and the mental control required to cope with the stigma. The results of the present studies had significant implications for the understanding of the LD phenomenon and the intervention of LD adolescents. The results indicate that: 1. Generally, middle school students had negative implicit attitude and negative explicit attitudes towards the LD students. The effect size of the phenomenon of this study is large. The LD students showed a more positive attitude than others on the explicit attitude measure; all students consistently had negative attitudes toward LD students on the implicit attitude indices, in addition, no group differences and gender differences were observed in the implicit attitude. 2. Eight hundred and seventy two students were surveyed to test the reliability and validity of the new developed perceived stigma scale and self-stigma scale. Both questionnaires showed sufficient content validity, construct validity, criterion-related validity and adequate internal consistency reliability. Then, both questionnaires were administered to student with high academic achievement (high achiever), students with middle academic achievement (middle achiever), and LD students. Results revealed that the LD students mildly stigmatized by the social culture. The LD students had more stigma perception and self-stigma than the middle achievers and high achievers. The results also indicated that there were more stigma perception and self-stigma for LD students in grade two than that of LD students in grade one and grade three; meanwhile, male LDstudent hade more stigma perception and self-stigma than female LD students in all grades. 3. A latent variable path analysis was conducted to investigate how the stigma affect the academic goals using the data collected from 186 LD students. The results suggested that the LD-related stigma did not have direct influence on academic goals. The LD-related stigma indirectly influenced the academic goals through mediating effects of self-stigma and academic efficacy. 4. Stereotype threat could have some influences on the relationship between the task feedback and self-esteem. The results of study using eighty-four LD students showed that: when the negative stereotype was not primed, the self-esteem of the LD students was significantly influenced by the feedback of the task: an enhance self-esteem following a positive feedback and a lower self-esteem following a negative feedback. When the negative stereotype was primed, there was no significantly difference between the positive feedback group and negative feedback group. All the results showed that priming the negative stereotype could weaken the influence of feedback to the self-esteem of LD students. 5. There was more cognitive and behavioral control when LD students tried to cope with the stigma by concealing negative academic achievement during an individual interview with an unfamilar expert. The LD students whose academic achievements could be concealed had more thought suppression and thought intrusion and reported more self-monitoring behavior than the participants in the other experimental conditions.
Resumo:
In order to monitor multiple protein reaction processes simultaneously, a biosensor based on imaging ellipsometry operated in the total internal reflection mode is proposed. It could be realised as an automatic analysis for protein interaction processes with real-time label-free method. Its principle and methodology as well as a demonstration for its applications are presented.
Resumo:
Based on the internal variable theory, a viscoelastic constitutive model of a highly deformable continuous medium is proposed. A set of second rank tensorial internal state variables corresponding to Biot's strain is introduced, and a nonlinear evolution
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
The internal stresses in a duplex coating involving a prequenched layer are believed to change if it is exposed to thermal loading. To characterise the internal stresses in such a duplex coating, a gradient model of finite element method is set up. The initial stress within the substrate developed in as quenching and the internal stresses due to the tempering of the prequenched layer ( TPQL) in such a duplex coating are calculated. The synthetical internal stresses in coating can be estimated by superposing uniform initial stresses developed during plating. The results indicate that the residual tensile stresses due to fabrication in coating will be decreased greatly, or even synthetical compressive internal stresses may arise in the coating.
Resumo:
Internal friction of nanocrystalline nickel is investigated by mechanical spectroscopy from 360 K to 120 K. Two relaxation peaks are found when nanocrystalline nickel is bent up to 10% strain at room temperature and fast cooling. However, these two peaks disappear when the sample is annealed at room temperature in vacuum for ten days. The occurrence and disappearance of the two relaxation peaks can be explained by the interactions of partial dislocations and point defects in nanocrystalline materials.
Resumo:
Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.
Resumo:
Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited
Resumo:
A limit stop is placed at the elbow of an L-shaped beam whose linear natural frequencies are nearly commensurable. As a result of this hardening device the non-linear system exhibits multiple internal resonances, which involve various degree of coupling between the first five modes of the beam in free vibration. A point load is so placed as to excite several modes and the resulting forced vibration is examined. In the undamped case, three in-phase and two out-of-phase solution branches have been found. The resonance curve is extremely complicated, with multiple branches and interactions between the first four modes. The amplitudes of the higher harmonics are highly influenced by damping, the presence of which can effectively attenuate internal resonances. Consequently parts of the resonance curve may be eliminated, with the resulting response comprising different distinctive branches. (C) 1996 Academic Press Limited
Resumo:
The effect of variable currents on internal solitary waves is described within the context of a variable coefficient Korteweg-de Vries (KdV) equation, and the approximate slowly varying, solitary-wave solution of this equation. The general theory which leads to the variable coefficient KdV equation is described; a derivation for the special case when the solitary wave and the current are aligned in the same direction is given in the Appendix. Using further simplifications and approximations, a number of analytical expressions are obtained for the variation in the solitary wave amplitude resulting from variable shear in the basic current or from when the basic current is a depth-independent flow which is a simple representation of a geostrophic current, tidal flow or inertial wave.
Resumo:
A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.