10 resultados para Inter-Atomic Potential
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The rapid evolution of nanotechnology appeals for the understanding of global response of nanoscale systems based on atomic interactions, hence necessitates novel, sophisticated, and physically based approaches to bridge the gaps between various length and time scales. In this paper, we propose a group of statistical thermodynamics methods for the simulations of nanoscale systems under quasi-static loading at finite temperature, that is, molecular statistical thermodynamics (MST) method, cluster statistical thermodynamics (CST) method, and the hybrid molecular/cluster statistical thermodynamics (HMCST) method. These methods, by treating atoms as oscillators and particles simultaneously, as well as clusters, comprise different spatial and temporal scales in a unified framework. One appealing feature of these methods is their "seamlessness" or consistency in the same underlying atomistic model in all regions consisting of atoms and clusters, and hence can avoid the ghost force in the simulation. On the other hand, compared with conventional MD simulations, their high computational efficiency appears very attractive, as manifested by the simulations of uniaxial compression and nanoindenation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
探索和建立不同尺度理论之间的关联模式是科学研究的重要课题,本文基于跨尺度模型着重探讨了金属陶瓷界面的凝聚能和原子结构问题。本文遵循原始Peierls-Nabarro模型的基本思想,提出了一种处理一维界面失配位错组的新方法。在这个推广的Peierls-Nabarro模型中,本文得到了一个简单而且准确的解析解,此解反映了失配位错的核结构、能量与失配度、剪切模量之间的依赖关系。当界面剪切模量较强而失配度较小时,界面的结构可以用一组奇导师Volterra位错来描述,这与一些原子模拟结果一致。采用这一简单的模型,引入第一原理计算得到的数据,此模型可以估算金属陶瓷界面的凝聚能。一维界面失配位错组的Peierls-Nabarro模型还被解析推广描述一大类较宽的位错。在模型中我们引进了一个参数a,通过控制参数a,我们可以系统地改变失配位错芯的宽度、剪切应力的分布和弹性恢复力。随着a增加,位错宽度增加,同时弹性恢复力和失配位错应力的幅度减少。当界面剪切模量强和失配度小时,失配位错的宽度近似线性反比于弹性恢复力的幅度大小。同时当界面剪切模量和失配度固定时,失配能、弹性能和总的界面能随a的增加而减少。界面能和恢复力律形式密切相关,当界面剪切模量弱和失配度大时,这种依赖关系更强。考虑到界面常常是在晶格两个方向都有失配,本文还引进了描述界面周期失配位错的二维广义Peierls-Nabarro模型,使得我们能够定量地研究界面的结构和能量。文中定量分析了广义堆垛能γ面对界面失配位错的结构和能量的影响,分析了位错网中两种位错组的相互作用。当界面剪切模量τ_0变大和失配度f变小时,随着位错核区占整个界面的比重下降,γ面的形状对界面能量和结构影响减弱,结果两种位错组之间的相互作用也减弱。此外γ面的变化还有可能导致位错网结构的转变,也就是导致界面结构的转变。应用此模型,本文还研究了金属-陶瓷Ag/MgO(100)界面,给出了界面的能量和原子结构。文中得出结论:在Ag/MgO(100)界面将会形成{1/2<110>; <110>}类型的位错网。此外由于界面失配位错的形成,Ag/MgO(100)界面凝聚能的理论值900mJ/m~2将减少214mJ/m~2,最终成为686mJ/m~2。基于第一原理赝势平面波的总能计算,文中给出了金属陶瓷Al/MgO(100)界面弛豫和未弛豫时的广义堆垛能面。然后结合第三章发展的广义二维Peierls-Nabarro模型,详细研究了金属陶瓷Al/MgO(100)界面的原子结构和界面能。文中得出的“在Al/MgO(100)界面将会形成{1/2<110>; <110>}类型位错网”的推论,证实了Vellinga等的猜测;文中还预测了凝聚能的理论是在600mJ/m~2(未弛豫情形)和670mJ/m~2(弛豫情形)之间。这个应用表明此方法能够容易地建立连续介质理论和第一原理计算之间的联系,实现理论上的跨尺度。本文最后提出了一种得到界面原子有效对势的反演方法。通过反演金属-MgO陶瓷界面的第一原理计算的凝聚能曲线,我们得到了一些金属原子和陶瓷离子之间的对势,此对势反映了金属陶瓷键合的特性。本文的反演方法提供了通过第一原理计算数据来拟合界面原子对势的一种可行性途径。这种方法可归结为第一类尺度关联理论,即单向的跨尺度关联模式。
Resumo:
Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.
Resumo:
Smooth thin films of three kinds of nickel(II)-azo complexes were prepared by the spin-coating method. Absorption spectra of the thin films on K9 glass substrate in the 300-600 nn wavelength region were measured. Optical constants (complex refractive index N = n + ik) and thickness of the thin films prepared on single-crystal silicon substrate in the 300-600 nm wavelength region were investigated on rotating analyzer-polarizer type of scanning ellipsometer, and dielectric constants epsilon (epsilon = epsilon(1) + i epsilon(2)), absorption coefficients a as well as reflectance R of thin films were then calculated at 405 nm. In addition, in order to examine the possible use of nickel(II)-azo complex thin film as an optical recording medium, one of the nickel(II)-azo complex thin film prepared on K9 glass substrate with an Ag reflective layer was also studied by atomic force microscopy and static optical recording. The results show that the nickel(II)-azo complex thin film is smooth and has a root mean square surface roughness of 2.25 nm, and the recording marks on the nickel(II)-azo complex thin film are very clear and circular, and their size can reach 200 nn or less. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.
Resumo:
The Al atomic characteristic spectral lines were induced by the impact of Ar-40(q+) ions (8 <= q <= 16; kinetic energy 150 keV) on Al surface. The result shows that by Penning impinging and resonant capture, the ion energy is deposited on the Al surface to excite the target atom, which is different from light excitation. Not only are the transitions betweem electronic configurations of the atomic complex excited, but the enhancing tendency of the characteristic spectral line intensity is consistent with the enhancing tendency of the coulomb potential energy of the incident ions with increasing charged states.
Resumo:
A detailed investigation of plasma screening effects on atomic structure and transition properties are presented for He-like ions embedded in dense plasma environment. Multi-configuration Dirac-Fock calculations were carried out for these ions by considering a Debye-Huckel potential. A large-scale relativistic configuration-interaction method is adopted to calculate transition energies and transition probabilities and to allow for a systematic improvement of the calculations. Comparison of the presently calculated results with others, when available, is made.
Resumo:
Arabinogalactan derivatives conjugated with gad olinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A(2)) or hexylamine (Gd-DTPA-CMAG-A(6)) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), C-13 nuclear magnetic resonance (C-13 NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES).
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.