86 resultados para Injury measurement
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.
Resumo:
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
We present density measurements from the application of interferometry and Fourier transform fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and compare our experimental measurements to theoretical results from a CFD simulation of the same problem. The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visualization of the shear layer and an associated vortical structure. Comparison between CFD and experiment show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a transitional Mach reflection.
Resumo:
In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.
Resumo:
微电子机械系统(MEMS)技术的迅速崛起,推动了所用材料微尺度力学性能测试技术的发展.首先按作用方式将实验分成压痕/划痕、弯曲、拉伸、扭转四大类,系统介绍检测MEMS材料微尺度力学性能的微型试样、测试方法及其实验结果.测试材料主要有硅、氧化硅、氮化硅和一些金属.实验结果主要包括基本的力学性能参数如弹性模量、残余应力、屈服强度、断裂强度和疲劳强度等.最后,简要分析了未来的发展需求.
Resumo:
A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.
Resumo:
对涡轮流量传感器进行了理论分析,给出了涡轮流量计仪表常数的计算方法,讨论了获得较大固有仪表常数K_0时涡轮传感器结构参数(如叶片数、涡轮半径、口径等)的优化组合问题,通过多相流动实验,总结出K_0与流动密度之间的实验关系,由此给出用涡轮流量计测量多相流的半理论半经验公式,并在油井多相流量测量中得到了实际应用,符合较好。
Resumo:
In this paper, a real-time and in situ optical measuring system is reported to observe high-velocity deformations of samples subjected to impact loading. The system consists of a high-speed camera, a He-Ne laser, a frame grabber, a synchronization device and analysis software based on digital correlation theory. The optical system has been adapted to investigate the dynamic deformation field and its evolution in notched samples loaded by an split Hopkinson tension bar, with a resolution of 50 pin and an accuracy of 0.5 mum. Results obtained in experiments are discussed and compared with numerical simulations. It is shown that the measuring system is effective and valid.
Resumo:
Turbidity measurement for the absolute coagulation rate constant of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor to derive the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed in the aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion about the physical insight of using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the calculated data of the optical factor by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
Resumo:
Two principal problems of equivalency and locality in nano-scale measurement are considered in this paper. The conventional measurements of force and displacement are always closely related to the equivalency problem between the measuremental results by experimental system and the real physical status of the sample, and the locality of the mechanical quantities to be measured. There are some noticeable contradictions in nano-scale measurements induced by the two problems. In this paper, by utilizing a coupled molecular-continuum method, we illustrate the important effects of the two principal problems in atomic force microscopy (AFM) measurements on nano-scale. Our calculations and analysis of these typical mechanical measurement problems suggest that in nano-meter scale measurements, the two principal problems must be carefully dealt with. The coupled molecular-continuum method used in this paper is very effective in solving these problems on nano-scale.
Resumo:
Thermally induced recovery of nanoindents in a CUAINi single crystal shape memory alloy was studied by nanoindentation in conjunction with a heating stage. Nanoindents formed by a Berkovich indenter at room temperature were heated to 40, 70 and 100 degrees C. Partial recovery was observed for the nanoindents. The recovery ratio depended on the heating temperature. Indentation of CuAlNi can induce inelastic deformation via dislocation motion and a stress-induced matensitic transformation. The percentages of dislocation-induced plastic strain would affect the thermal deformation of CuAlNi, because the induced dislocations could stabilize stress-induced martensite plates even when the temperature above austenite finish temperature, A(f). When the applied indentation load is low (less than 10,000 mu N), the shape recovery strain is predominant, compared with the dislocation-induced plastic strain. Therefore, the degree of indent recovery in the depth direction, delta(D), is high (about 0.7-0.8 at 100 degrees C).
Resumo:
An ultrasonic pulse-echo method was used to measure the transit time of longitudinal and transverse (10 MHz) elastic waves in a Nd60Al10Fe20Co10 bulk metallic glass (BMG). The measurements were carried out under hydrostatic pressure up to 0.5 GPa at room temperature. On the basis of experimental data for the sound velocities and density, the elastic moduli and Debye temperature of the BMG were derived as a function of pressure. Murnaghan's equation of state is obtained. The normal behaviour of the positive pressure dependence of the ultrasonic velocities was observed for this glass. Moreover, the compression curve, the elastic constants, and the Debye temperature of the BMG are calculated on the basis of the similarity between their physical properties in the glassy state and those in corresponding crystalline state. These results confirm qualitatively the theoretical predictions concerning the features of the microstructure and interatomic bonding in the Nd60Al10Fe20Co10 BMG.
Resumo:
The fracture toughness and interfacial adhesion properties of a coating on its substrate are considered to be crucial intrinsic parameters determining performance and reliability of coating-substrate system. In this work, the fracture toughness and interfacial shear strength of a hard and brittle Cr coating on a normal medium carbon steel substrate were investigated by means of a tensile test. The normal medium carbon steel substrate electroplated with a hard and brittle Cr coating was quasi-statically stretched to induce an array of parallel cracks in the coating. An optical microscope was used to observe the cracking of the coating and the interfacial decohesion between the coating and the substrate during the loading. It was found that the cracking of the coating initiated at critical strain, and then the number of the cracks of the coating per unit axial distance increased with the increase in the tensile strain. At another critical strain, the number of the cracks of the coating became saturated, i.e. the number of cracks per unit axial distance became a constant after this critical strain. Based on the experiment result, the fracture toughness of the brittle coating can be determined using a mechanical model. Interestingly, even when the whole specimen fractured completely under an extreme strain of the substrate, the interfacial decohesion or buckling of the coating on its substrate was completely absent. The test result is different from that appeared in the literature though the identical test method and the brittle coating/ductile metal substrate system are taken. It was found that this difference can be attributed to an important mechanism that the Cr coating on the steel substrate has a good adhesion, and the ultimate interfacial shear strength between the Cr coating and the steel substrate has exceeded the maximum shear flow strength level of the steel substrate. This result also indicates that the maximum shear flow strength level of the ductile steel substrate can be only taken as a lower bound estimate on the ultimate shear strength of the interface. This estimation of the ultimate interfacial shear strength is consistent with the theoretical analysis and prediction presented in the literature.
Resumo:
The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. in this Study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature. (C) 2008 Elsevier Inc. All rights reserved.