293 resultados para Infrared (IR)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.
Resumo:
Infrared (IR) luminescence covering 1.1 to similar to 1.6 mu m wavelength region was observed from bismuth-doped barium silicate glasses, excited by a laser diode at 808 nm wavelength region, at room temperature. The peak of the IR luminescence appears at 1325 nm. A full width half-maximum (FWHM) and the lifetime of the fluorescence is more than 200 nm and 400 mu s, respectively. The fluorescence intensity increases with Al2O3 content, but decreases with BaO content. We suggest that the IR luminescence should be ascribed to the low valence state of bismuth Bi2+ or Bi+, and Al3+ ions play an indirect dispersing role for the infrared luminescent centers.
Resumo:
We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.
Resumo:
High optical quality Lu2SiO5 (LSO) and (Lu0.5Gd0.5)(2)SiO5 (LGSO) laser crystals codoped with Er3+ and Yb3+ have been fabricated by the Czochralski method. Intense upconversion (UC) and infrared emission (1543 nm) are observed under excitation of 975 nm. The luminescence processes are explained and the emission efficiencies are quantitatively obtained by measuring the UC efficiency and calculating the emission cross section. The temperature-dependent optical properties of the crystals are also investigated. Our study indicates that Er3+-Yb3+ : LSO and Er3+-Yb3+: LGSO crystals are promising gain media for developing the solid-state 1.5 mu m optical amplifiers and tunable UC lasers. (c) 2008 American Institute of Physics.
Resumo:
GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making 3-5 um photovoltaic infrared (IR) detectors with a peak detectivity of 5 x 10(11) cm Hz(1/2)/W at 80 K. Double crystal X-ray diffraction is combined with synchrotron radiation X-ray analysis to determine successfully the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spectra of the linear array of the detectors are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region. The spectral response of the IR photocurrent of the devices is also measured and compared with the temperature dependent IR absorption of the DBQW samples in order to get a better understanding of the bias-controlled optical and transport behavior of the detector photoresponse and thus to optimize the detector performance. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making the 3 similar to 5 mu m photovoltaic infrared (IR) detectors with a peak detectivity of 5x10(11) cmHz(1/2)/W at 80K. The double crystal x-ray diffraction is combined with synchrotron radiation x-ray analysis to determine the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spect ra of the DBQW sample and the spectral response of the IR photocurrent of the devices are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region.
Resumo:
The adsorption of CO on both nitrided and reduced passivated Mo(2)N catalysts in either alumina supported or unsupported forms was studied by adsorption microcalorimetry and infrared (IR) spectroscopy. The CO is adsorbed on nitrided Mo(2)N catalysts on three different surface sites: 4-fold vacancies, Mo(delta+) ( 0 < delta < 2) and N sites, with differential heats of CO adsorption decreasing in the same order. The presence of the alumina-support affects the energetic distribution of the adsorption sites on the nitrided Mo(2)N, i.e. weakens the CO adsorption strength on the different sites and changes the fraction of sites adsorbing CO in a specific form, revealing that the alumina supported Mo(2)N phase shows lower electron density than pure Mo(2)N. On reduced passivated Mo(2)N catalysts the CO was found to adsorb mainly on Mo(4+) sites, although some slightly different surface Mo(delta+) d (0 < delta < 2) sites are also detected. The nature, density and distribution of surface sites of reduced passivated Mo(2)N/gAl(2)O(3) were similar to those on reduced MoO(3)/gamma-Al(2)O(3).
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
Infrared (IR) spectra of normal, hyperplasia, fibroadenoma and carcinoma tissues of human breast obtained from 96 patients have been determined and analyzed statistically. Several spectral differences were detected in the frequency regions of N-H stretching, amide I, II and III bands: (1) the bands in the region 3000-3600cm-1 shifted to lower frequencies for the carcinomatous tissue; (2) the A(3300)/A(3075) absorbance ratio was significantly higher for the fibroadenoma than for the other types of tissues; (3) the frequency of the a-helix amide I band decreased for the malignant tissue, while the corresponding beta -sheet amide I band frequency increased; (4) the A(1657)/A(1635) and A(1553)/A(1540) absorbance ratios were the highest for fibroadenoma and carcinoma tissues; (5) the A(1680)/A(1657) absorbance ratio decreased significantly in the order of normal > hyperplasia > fibroadenoma > carcinoma; (6) the A(1651)/A(1545) absorbance ratio increased slightly for the fibroadenoma and the carcinoma tissues; (7) the bands at 1204 and 1278 cm(-1), assigned to the vibrational modes of the collagen, did not appear in the original spectra as resolved peaks and were distinctly stronger in the deconvoluted spectra of the carcinoma tissue and (8) the A(1657)/A(1204) and A(1657)/A(1278) absorbance ratios, both yielding information on the relative content of collagen, increased in the order of normal < hyperplasia < carcinoma < fibroadenoma. The said differences imply that the information is useful for the diagnosis of breast cancer and malignant breast abnormalities, and may serve as a basis for further studies on conformational changes in tissue proteins during carcinogenesis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.
Resumo:
The frequency upconversion properties of Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses under 975 mn excitation are investigated. Intense green and red emission bands centered at 536, 556 and 672 run, corresponding to the H-2(1/2) --> I-4(15/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) -->I-4(15/2) transitions of Er3+, respectively, were simultaneously observed at room temperature. The influences of PbO on upconversion intensity for the green (536 and 556 nm) and red (672 nm) emissions were compared and discussed. The optimized rare earth doping ratio of Er3+ and Yb3+, is 1:5 for these glasses, which results in the stronger upconversion fluorescence intensities. The dependence of intensities of upconversion emission on excitation power and possible upconversion mechanisms were evaluated and analyzed. The structure of glass has been investigated by means of infrared (IR) spectral analysis. The results indicate that the Er3+/Yb3+-codoped heavy metal oxide lead-germanium-bismuth oxide glasses may be a potential materials for developing upconversion fiber optic devices. (C) 2006 Published by Elsevier Ltd.
Resumo:
The absorption spectra and upconversion fluorescence spectra of Er3+/-Yb3+-codoped natrium-gallium-germanium-bismuth glasses are measured and investigated. The intense green (533 and 549 nm) and red (672 nm) emission bands were simultaneously observed at room temperature. The quadratic dependence of the green and red emission on excitation power indicates that the two-photon absorption processes occur. The influence of Ga2C3 on upconversion intensity is investigated. The intensity of green emissions increases slowly with increasing Ga2O3 content, while the intensity of red emission increases significantly. The possible upconversion mechanisms for these glasses have also been discussed. The maximum phonon energy of the glasses determined based on the infrared (IR) spectral analysis is as low as 740 cm(-1). The studies indicate that Bi2O3-GeO2-Ga2O3-Na2O glasses may be potential materials for developing upconversion optical devices (c) 2006 Published by Elsevier B.V.
Resumo:
New lithium-barium-lead-bismuth glasses with low OH- concentration have been obtained. The role of the different components in the glass formation has been explored from the thermal, density, and refractive index measurements. The T-g, T-x, and T-x-T-g values of these glasses are in the range of 358-400, 453-575, and 87-197 degreesC, respectively. The densities (p) and refractive indices of these glasses are mainly affected by Bi2O3 and PbO contents. A wide transmitting window from visible to infrared (IR) regions for some compositions of these glasses has been observed, which makes them appealing candidates for different optical applications such as upconverting phosphors, new laser materials, optical waveguides, and crystal-free fibre drawing. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
用脉冲电子束激发测量了不同Yb^3+掺杂浓度的Yb:YAG晶体的红外(IR)闪烁发光性能。Yb:YAG晶体的IR闪烁发光具有高的光产额和长的衰减时间,但存在浓度猝灭效应和温度依赖关系。Yb:YAG晶体的IR闪烁性能还与晶体品质有关,相同掺杂浓度的Yb:YAG晶体,品质优异的会获得更高的光产额。这一初步的研究成果表明,部分掺Yb^3+晶体有可能用于医学成像装置。
Resumo:
YAlO3 (YAP) crystals with different Yb3+ concentration have been grown by Czochralski method and cooperative fluorescence of Yb3+ ions in YAP crystal was studied under 940-nm infrared (IR) LD excitation at room temperature. The Yb concentration dependence of absorption intensity of IR and charge transfer bands exhibit different features. The green emission band in the region of 480-520nm was assigned to the cooperative deexcitation of two Yb3+ ions. The remaining upconverted emission bands containing various sharp peaks associated with impurity ions were observed and discussed. Charge transfer luminescence of heavily doped 20at% Yb:YAP is strongly temperature dependent and no concentration quenching of the charge transfer luminescence was found through the investigation of different Yb levels samples. (c) 2006 Elsevier B.V. All rights reserved.