18 resultados para Infection by inhalation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Resumo:
Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Resumo:
Penaeidin from Chinese shrimp (Fenneropenaeus chinensis) has proved to be one of the most important antimicrobial peptides in the bodies of animals. The relative quantitative real-time PCR method is developed to study through time, the mRNA expression profile of penaeidin in the muscle and haemocyte tissue of Chinese shrimp infected with vibrio (Vibrio anguillarum) and WSSV (white spot syndrome virus). Research results showed that the same pathogens infection experiments produced similar gene expression profile in different tissues while different expression profiles appeared in the same tissues infected by different exterior pathogens. In vibrio infection experiments, a "U" Re expression profile resulted. Expression levels of penaeidin increased and surpassed the non-stimulated level, indicating that penaeidin from Chinese shrimp has noticeable antimicrobial activities. In WSSV infection experiments, the expression profile appeared as an inverse "U" with the expression of penaeidin gradually decreasing to below baseline level after 24 h. The expression of antimicrobial peptides gene in mRNA level in response to virus infection in shrimp showed that international mechanisms of virus to haemocytes and microbial to haemocytes are completely different. Decline of penaeidins expression levels may be due to haemocytes being destroyed by WSSV or that the virus can inhibit the expression of penaeidins by yet undiscovered modes. The expression profiles of penaeidin in response to exterior pathogen and the difference of expression profiles between vibrio and WSSV infection provided some clues to further understanding the complex innate immune mechanism in shrimp.
Resumo:
Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem
Resumo:
Toll-like receptor 3 (TLR3) plays a key role in activating immune responses during viral infection. To study the genes involved in the regulatory function of TLR3 in the rare minnow Gobiocypris rarus after viral infection, a full-length cDNA of TLR3 (GrTLR3) with a splice variant (GrTLR3s) was identified by homologous cloning and RACE techniques. The antiviral effector molecule Mx gene was cloned and partially sequenced. The mRNA expression levels of GrTLR3, GrTLR3s, and Mx were studied in different tissues before and after virus infection by real-time quantitative RT-PCR. The transcripts of all three genes in liver were significantly increased following GCRV infection (P<0.05). The mRNA levels in liver were upregulated at 24 h post-injection for GrTLR3 and GrTLR3s, and at 12 h for Mx. The upregulated expression levels were several folds for GrTLR3s, tens of folds for GrTLR3, and hundreds of folds for Mx. By semi-quantitative RT-PCR, GrTLR3 and Mx expressed at all the developmental stages, whereas GrTLR3s could only be detected at later developmental stages. Using RNAi and transgenic techniques, GrTLR3 mediated Mx expression but GrTLR3s did not. The time-dependent upregulation of receptor and effector, and the Mx over-expression dependent on TLR3, indicated that GrTLR3 regulated Mx expression in viral infection through a configuration change in rare minnow, and its splice variant did not contribute to the process.
Resumo:
Dot enzyme-linked immunosorbent assay (dot-ELISA), indirect ELISA and Western blot were performed to detect the virulent protease secreted by Vibrio anguillarum which was isolated from the diseased left-eyed flounder, Paralichthys olivaceous. Sensitivity results showed that dot-ELISA is a more sensitive, rapid and simple technique for the protease detection. The minimal detectable amount of protease is about 7 pg in the dot-ELISA test, while 7.8 ng in the indirect ELISA and 6.25 ng in the Western blot respectively. Protease could be detected 2 h after incubation of V. anguillarum in the 2216E liquid medium but enzyme activity was very low at that period. From 6 to 12 h, the amount and enzyme activity of protease increased markedly and reached maximum at stationary phase. Analysis of serum samples periodically collected from the infected flounders showed that after 2 h of infection by V. anguillarum, the pathogenic bacteria could be detected in the blood of the infected flounders but no protease was found. It was 5 similar to 6 h after infection that the protease was detected in blood and then the amount increased as infection advanced. Quantitative detection of protease either incubation in the medium or from the blood of infected flounders could be accomplished in virtue of positive controls of quantificational protease standards ("marker") so that the alterations of protease secretion both in vitro and in vivo could be understood generally. In addition, the indirect ELISA and dot-ELISA were also performed to detect V. anguillarum cells. Results indicated that the sensitivity of indirect ELISA to bacteria cells is higher than that of the dot-ELISA, and that the minimal detectable amount is approximately 10(4) cell/mL in the indirect ELISA, while 10(5) cell/mL in the dot-ELISA.
Resumo:
Interspecific symbiotic relationships involve a complex network of interactions, and understanding their outcome requires quantification of the costs and benefits to both partners. We experimentally investigated the costs and benefits in the relationship between European bitterling fish (Rhodeus sericeus) and freshwater mussels that are used by R. sericeus for oviposition. This relationship has hitherto been thought mutualistic, on the premise that R. sericeus use mussels as foster parents of their embryos while mussels use R. sericeus as hosts for their larvae. We demonstrate that R. sericeus is a parasite of European mussels, because it (i) avoids the cost of infection by mussel larvae and (ii) imposes a direct cost on mussels. Our experiments also indicate a potential coevolutionary arms race between bitterling fishes and their mussel hosts; the outcome of this relationship may differ between Asia, the centre of distribution of bitterling fishes, and Europe where they have recently invaded.
Resumo:
An antibody phage display library against White Spot Syndrome Virus (WSSV) was constructed. After four rounds of panning against WSSV, 192 out of 480 clones displayed WSSV binding activity. One of the positive clones, designated A1, had relatively higher activity specifically binding to WSSV A1-soluble, single-chain fragment variable (scFv) antibody has an affinity constant (K-aff) of 2.02 +/- 0.42 x 10(9) M-1. Dot blot assays showed that A1-soluble scFv could detect WSSV directly from shrimp hemolymph after 24-h feeding infection by WSSV. A1 scFv has potential for the development of a cheap, simple and sensitive diagnostic kit for WSSV in the field. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
HR212, a recombinant protein expressed in Escherichia coli, has been previously reported to inhibit HIV-1 membrane fusion at low nanomolar level. Here we report that HR212 is effective in blocking laboratory strain HIV-1IIIB entry and replication with EC50 values of 3.92±0.62 and 6.59±1.74 nM, respectively, and inhibiting infection by clinic isolate HIV-1KM018 with EC50 values of 44.44±10.20 nM, as well as suppressing HIV-1- induced cytopathic effect with an EC50 value of 3.04±1.20 nM. It also inhibited HIV-2ROD and HIV-2CBL-20 entry and replication in the μM range. Notably, HR212 was highly effective against T20-resistant strains with EC50 values ranging from 5.09 to 7.75 nM. Unlike T20, HR212 showed stability sufficient to inhibit syncytia formation in a time-of-addition assay, and was insensitive to proteinase K digestion. These results suggest that HR212 has great potential to be further developed as novel HIV-1 fusion inhibitor for treatment of HIV/ AIDS patients, particularly for those infected by T20-resistant variants.
Resumo:
天然免疫分子TRIM5α(tripartite motif protein 5α)是近年来发现的一种重要的宿主细胞内逆转录病毒限制因子。在灵长类动物细胞中,TRIM5α蛋白可以在病毒进入细胞后、逆转录前的阶段抑制HIV-1、N-MLV和EIAV等逆转录病毒的复制。由于TRIM5α分子的作用,绝大部分旧大陆猴(Old World monkey)都不能感染HIV-1。而在新大陆猴(New World monkey)中,鹰猴是唯一不感染HIV-1的灵长类动物。研究证明,鹰猴细胞中存在的TRIM5-CypA融合蛋白(owl monkey TRIM5-CypA,omTRIMCyp)介导了抗HIV-1的作用,从而使鹰猴不能感染HIV-1。研究证明,平顶猴是旧大陆猴中唯一报道可以感染HIV-1的灵长类动物,但是其感染HIV-1的机制并不清楚。根据现行的灵长类动物分类学,原属平顶猴群体(M. nemestrina group)的三个亚种分为猕猴属的三个不同种:巽他平顶猴(Sunda pig-tailed macaque,M. nemestrina),北平顶猴(Northern pig-tailed macaque,M. leonina)和明打威猴(Mentawai macaque,M. pagensis)。本论文对中国云南境内北平顶猴TRIM5基因座和感染HIV-1的相关性进行了研究。通过PCR和测序对北平顶猴基因组TRIM5基因座进行分析,发现一个CypA假基因的cDNA通过逆转座机制插入至TRIM5基因座的3’-UTR区域,形成了一个不同于鹰猴TRIM5-CypA的新型融合基因npmTRIMCyp(northern pig-tailed macaque TRIM5-CypA)。通过RT-PCR对npmTRIMCyp融合基因的转录本进行分析,我们鉴定出npmTRIMCyp共有3种不同的选择性剪接产物,分别为npmTRIMCypV1-V3。进一步克隆和测序这3种不同选择性剪接体,通过丰度和序列分析证实:npmTRIMCypV2是优势剪接体,可能在该融合基因产物的功能中发挥作用。研究发现北平顶猴npmTRIMCyp融合基因主要转录本中外显子7和8均被剪切掉。外显子7剪接丢失机制源于TRIM5第6内含子内 3’剪接位点的G/T突变。我们克隆了npmTRIMCyp融合基因cDNA的蛋白编码区ORF,并构建了重组表达npmTRIMCyp的载体,转染HeLa和HeLa-T4细胞并获得稳定表达的细胞株。通过感染HIV-1证实,npmTRIMCyp融合蛋白不能够限制HIV-1的感染和复制,这可能是北平顶猴作为旧大陆猴中唯一对HIV-1易感的灵长类动物的重要分子机制之一。通过HIV-1感染灵长类动物PBMCs实验证实,北平顶猴可以感染HIV-1。npmTRIMCyp可以有效地限制HIV-2ROD的复制,但对SIVmac239只有十分微弱的限制活性。通过构建鹰猴omTRIMCyp和北平顶猴npmTRIMCyp的置换剪接体(SWAP-1和SWAP-2),转染融合基因及其置换剪接体的CRFK细胞激光共聚焦实验证明,npmTRIMCyp、SWAP1和SWAP2在细胞内主要存在于胞浆中。稳定表达融合蛋白和置换剪接体的CRFK细胞感染HIV-1-GFP-VSVG分析表明,含omTRIMCyp外显子7的SWAP-1和SWAP-2均具有限制HIV-1活性,但SWAP-1的活性更强一些,这表明TRIM5结构域的外显子7可能在介导对HIV-1的限制活性中发挥了协同辅助作用。免疫共沉淀研究表明,npmTRIMCyp不能识别和结合HIV-1的衣壳蛋白。对北平顶猴中介导识别逆转录病毒区域的基因组部分进行了测序,共鉴定出46个多态性位点,表明在北平顶猴识别逆转录病毒衣壳区域存在较高的多态性。
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) effective against HIV-1 and HSV-1 replication. The mechanism of its antiviral activity is not clear. Many believe that it is related to ribosome inactivation. Some RIPs and viral infectio
Resumo:
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Delta psi m collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-kappa B activation and intracellular Ca2+ increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.