5 resultados para Infantile and juvenile literature. eng
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Microcystin-LR, a specific and potent hepatotoxin, was tested for its effects oil loach embryo-larval and juvenile development, The results of this study showed that loach embryos were more sensitive when exposed to microcystin-LR at a later than at an earlier stage of development, Juveniles were far less sensitive to MC-LR than were embryos and larvae. Mortality and developmental abnormality were proven to be dose-dependent and to be stage-specific sensitive. Among the abnormal changes noted were: pericardial edema and tubular heart, bradycardia, homeostasis, poor yolk resumption. small head, curved body and tail, and abnormal hatching, Liver and heart were the main targets of microcystin-LR toxicity. Ultrastructural analysis documented a complex set of sublethal effects of microcystin-LR on loach hepatocytes, chiefly including morphological alteration in nuclear and RER of loach liver cells. fit addition, microcystin-LR was lethal to loach juvenile in the subacute (7 days) exposure (LC50) = 593.3 mug/l). (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Juvenile tiger prawns (Penaeus semisulcatus De Haan and P. esculentus Haswell) show a strong association with vegetated habitats and are rarely caught on non-vegetated areas. This pattern of distribution may be caused by postlarvae selecting vegetation when they settle, or to differences in post-settlement mortality in different habitats. In this study, we examined whether the postlarvae and early juvenile stages of P. semisulcatus would distinguish between seagrass (Zostera capricorni Aschers) without epiphytes, artificial seagrass and bare substratum in the laboratory. The responses of prawns reared from the egg to different stages of postlarval and juvenile development were tested to determine whether, and when, each size class showed a response to a particular habitat. Five size classes of postlarvae (average carapace lengths [CL] of 1.2, 1.4, 1.6, 1.7 and 2.0 mm) were offered a choice between Z. capricorni and bare sand. Small size classes of postlarvae either did not respond to Z. capricorni (1.2 and 1.6 mm CL), or were more abundant on bare substratum than Z. capricorni. In contrast, the largest size classes of postlarvae (1.7 and 2.0 mm CL) were more abundant on Z. capricorni during the day but not at night. The behaviour of postlarvae changed markedly at a size of 1.7 mm CL (22 days from the first nauplius): smaller postlarvae frequently swam in the water column; 1.7 and 2.0 mm CL postlarvae spent much more. time resting on the substrate and perched on seagrass leaves. This size at which postlarvae first respond to seagrass during the day, and show mainly benthic behaviour, is similar to the size at which they are found on shallow seagrass beds in northern Australia. Large postlarvae (2.7 mm CL) and juveniles (4.1 mm CL) both were more abundant on artificial seagrass than bare sand during the day but not at night, indicating that they respond to structured habitats. When large postlarvae (2.4 mm CL) and juveniles (3.5 mm CL) were offered a choice between Z. capricorni without epiphytes and artificial seagrass, they were more abundant on the Z. capricorni, which suggests that chemical cues from seagrass may explain some of the responses of P. semisulcatus to seagrass. (C) 1997 Elsevier Science B.V.
Resumo:
Data on sleep-related behaviors were collected for a group of central Yunnan black crested gibbons (Nomascus concolor jingdongensis) at Mt. Wuliang, Yunnan, China from March 2005 to April 2006. Members of the group usually formed four sleeping units (adult male and juvenile, adult female with one semi-dependent black infant, adult female with one dependent yellow infant, and subadult male) spread over different sleeping trees. Individuals or units preferred specific areas to sleep; all sleeping sites were situated in primary forest, mostly (77%) between 2,200 and 2,400 m in elevation. They tended to sleep in the tallest and thickest trees with large crowns on steep slopes and near important food patches. Factors influencing sleeping site selection were (1) tree characteristics, (2) accessibility, and (3) easy escape. Few sleeping trees were used repeatedly by the same or other members of the group. The gibbons entered the sleeping trees on average 128 min before sunset and left the sleeping trees on average 33 min after sunrise. The lag between the first and last individual entering the trees was on average 17.8 min. We suggest that sleep-related behaviors are primarily adaptations to minimize the risk of being detected by predators. Sleeping trees may be chosen to make approach and attack difficult for the predator, and to provide an easy escape route in the dark. In response to cold temperatures in a higher habitat, gibbons usually sit and huddle together during the night, and in the cold season they tend to sleep on ferns and/or orchids.
Resumo:
The characteristics of inorganic carbon assimilation by photosynthesis were investigated in male and female gametophytes and juvenile sporophytes of Undaria pinnatifida. Gametophytes and sporophytes have detectable extracellular and intracellular carbonic anhydrase (CA) activity, and the CA inhibitor, acetazolamide (AZ), significantly inhibited their photosynthesis O-2 evolution. In pH-drift experiments, it was found that gametophytes did not raise the final pH of seawater above 9.00 (CO2 concentrations of about 2.2 mu M), indicating a low ability to utilize inorganic carbon. In contrast, sporophytes rapidly raised pH to over 9.53 and depleted the free CO2 Concentration to less than 0.16 mu M. The apparent photosynthetic affinity for CO2 was almost the same for gametophytes and sporophytes, whereas gametophytes had a much lower affinity for HCO3- than sporophytes. Two inhibitors of band 3 anion exchange protein (DIDS and SITS) inhibited the photosynthesis of gametophytes but not that of sporophytes. It was indicated that both gametophytes and sporophytes were capable of using HCO3-, which involved the external CA activity, and a direct HCO3- use also occurred in the former, but the latter showed a greater capacity of HCO3- use than the former. In addition, male and female gametophytes did not show great differences in the inorganic carbon uptake mechanism underlying photosynthesis.
Changes in RNA, DNA, protein contents and growth of turbot Scophthalmus maximus larvae and juveniles
Resumo:
The growth potential of turbot Scophthalmus maximus larvae and juveniles was studied using nucleic acid-based indices and protein variables. The experiment was carried out from 4 to 60 days post hatching (dph). A significant increase in instantaneous growth rate during metamorphosis and retarded growth rate during post-metamorphic phase were observed. Ontogenetic patterns of DNA, RNA and protein all showed developmental stage-specific traits. The RNA:DNA ratio decreased up to 12 dph, then increased rapidly till 19 dph and fluctuated until 35 dph followed by a decline to the end. The RNA:DNA ratio was positively correlated with growth rate of juveniles during the post-metamorphic phase, whereas this ratio was not a sensitive indicator of growth during the pre-metamorphic phase and metamorphosis. The protein:DNA ratio showed a similar tendency to the RNA:DNA ratio. Changes of DNA content and protein:DNA ratio revealed that growth of S. maximus performed mainly by hyperplasia from 4 to 12 dph and hypertrophy until 21 dph during the pre-metamorphic larval phase. Growth was dominantly hypertrophical from the early- to mid-metamorphosing phase and hyperplastic thereafter. The results show that the DNA content and protein:DNA ratio can evaluate growth rates of larval and juvenile S. maximus on a cellular level.