52 resultados para Industrial wastewater

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micronutrients play a very important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients (macronutrients and micronutrients) required for microbial growth, and this is one of the main problems at many activated sludge plants treating industrial wastewater. The microbial community structure is one of the important factors controlling the pollutant-degrading capacity of biological wastewater treatment system. In this study, the concentrations of micronutrients of the textile wastewater discharged from a textile plant were determined, and the effects of micronutrients on treatment efficiency and microorganism community structure of the biological treatment system were studied. The results showed that the optimal concentrations of magnesium, molybdenum, zinc, thiamine and niacin in the textile wastewater were 5.0, 2.0, 1.0, 1.0 and 1.0mg/L, respectively. The COD removal rates when magnesium, molybdenum, zinc, thiamine and niacin were added individually to the wastewater in their optimal concentrations were 1.8, 1.4, 1.3, 1.6 and 2.2 times of that of the control, respectively. The improving effects of combinations of zinc and thiamine, zinc and niacin, thiamine and niacin were better than single micronutrient. The diversity of quinones (DQ) changed significantly after the micronutrient was added into the wastewater treatment system. This indicated that there was probably a feasibility of optimizing the biological treatment performances and microorganism community structure of textile wastewater treatment system through micronutrient supplement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To characterize the contamination of anthropogenic organic contaminants in the aquatic environment of Chaohu Lake, China, 7 samples for both water and surface sediment were collected in the lake. Organic contaminants were extracted by solid phase extraction (SPE) and Soxhlet extraction from the water and surface sediment samples, respectively, and then analyzed by GC-MS. One hundred and twenty kinds of organic chemicals were detected in these samples including phenol, benzene series, benzaldehydes, ethanol, polycyclic aromatic hydrocarbons (PAHs), sulfur compounds, alcoholic halides, amines, ketones, esters, alkenes and alkanes. Among them, 13 kinds of chemicals were identified as priority pollutants listed by the U.S. Environmental Protection Agency (EPA), such as phthalate esters (PAEs) and PAHs. Besides, the concentrations of 19 of PAEs and PAHs including, priority pollutants identified were also determined. Bis(2-ethylhexyl)phthalate, the predominant component of the analyzed pollutants, was in the range from 72.34 ng g(-1) DW to 613.71 ng g(-1) DW, 14.80 ng L-1 to 47.05 ng L-1 in sediment and water, respectively. The results indicated that the northwest part of the lake was heavily polluted by domestic and industrial wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Xiangxi River is the first middling tributary of the Changjiang River near the Three Gorges Dam. The River is subject to phosphorus pollution mainly from industrial wastewater. As the water quality of the Xiangxi River could directly influence the water quality of the Three Gorges Reservoir, the research on phosphorus levels and its change in the sediment profile of the Xiangxi River could provide useful information in the dynamic changes in the system, thereby offering options for mitigative measures. Water and sediment samples from lower reaches of Xiangxi River were collected and the different forms of phosphorus in sediments of the Xiangxi River were studied. The concentrations of total phosphorus in sediment ranged from 757.67 to 1438.54 mg/kg. Inorganic phosphorus concentrations ranged from 684.63 to 1055.58 mg/kg. Phosphorus contamination was serious in some parts of the Xiangxi River. With an average concentration of 635.17 mg/kg, calcium-bound phosphorus is the main form among different inorganic phosphorus forms. Labile phosphorus and iron/aluminum-bound phosphorus measured 3.40, 0.05and 35.28 mg/kg, respectively. The mobilization potential of phosphorus of sediments was studied through adsorption and release experiments. The equilibrium concentration of phosphorus adsorption and release was around 0.1 mg/L. The initial concentrations of phosphorus in the overlying water and the sediments have obvious effect on phosphorus mobilization potential. In addition, the release rate of phosphorus in sediment increased with water depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida was investigated in batch experiments. The influence of pH, algal dosage, initial Cr(VI) concentration, temperature and coexisting anions on removal efficiencies of C. albida was studied. Cr(VI) removal process was influenced significantly by the variation of pH, and the optimum pH was chosen at a range of 1.0-3.0. The optimum algal dosage 2 g/L was used in the experiment. The removal rate of Cr(VI) was relatively rapid in the first 60 min, but then the rate decreased gradually. Removal mechanism was studied by analyzing Cr(VI) and total Cr in the solution. Biosorption and bioreduction were involved in the Cr(VI) removal. Biosorption of Cr(VI) was the first step. followed by Cr(VI) bioreduction and Cr(III) biosorption on the algal biomass. Actual industrial wastewater was used to evaluate the practicality of the biomass C. albida. From a practical viewpoint, the abundant and economic biomass C. albida could be used for removal of Cr(VI) from wastewater by the reduction of toxic Cr(VI) to less toxic Cr(III). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micronutrients play an important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients required for microbial growth, and this is one of the problems at many activated sludge plants treating them. In this study, the effects of the micronutrient niacin on the COD removal rates of textile wastewater, together with the effect of Mixed Liquor Suspended Solids (MLSS) on niacin, were studied. Certain improvement effects were found on the removal rates of COD, when 0.5 similar to 2.0 mg/L niacin was added to the textile wastewater. The optimal concentration of niacin was 1.0 mg/L, which was continuously added during textile wastewater treatment, and removal rates were 1.31 times compared to those of the control system. The concentration of MLSS was probably one of the factors influencing treatment efficiency, and the biological performance of treatment system could be optimized through micronutrient niacin supplements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pigments (melanoidins) in molasses wastewater are refractory to conventional biological treatment. Ferric chloride was used as coagulant to remove color and chemical oxygen demand (COD) from molasses effluent. Using jar test procedure, main operating conditions such as pH and coagulant dosage were investigated. Under the optimum conditions, up to 86% and 96% of COD and color removal efficiencies were achieved. Residual turbidity in supernatant was less than 5 NTU and Fe3+ concentration was negligible because of effective destabilization and subsequent sedimentation. The results of high performance size exclusion chromatography (HPSEC) show that low molecular weight (MW) fraction of melanoidins is more reactive than high MW fraction and increase in the concentration of the lowest MW organic group is related to the capacity of charge neutralization. Aggregate size measurement reveals the size effect on the settleability of flocs formed, with larger flocs settling more rapidly. Charge neutralization and co-precipitation are proposed as predominant coagulation mechanism under the optimum conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coagulation/flocculation process was applied in the polishing treatment of molasses wastewater on a bench-scale. Important operating variables, including coagulant type and dosage, solution pH, rapid mixing conditions as well as the type and dosage of polyeletrolytes were investigated based on the maximum removal efficiencies of chemical oxygen demand (COD) and color, residual turbidity and settling characteristics of flocs. HPSEC was utilized to evaluate the removal of molecular weight fractions of melanoidins-dominated organic compounds. Experimental results indicate that ferric chloride was the most effective among the conventional coagulants, achieving 89% COD and 98% color eliminations; while aluminum sulfate was the least effective, giving COD and color reductions of 66% and 86%, respectively. In addition to metal cations, counter-ions exert significant influence on the coagulation performance since Cl--based metal salts attained better removal efficiency than SO42--based ones at the optimal coagulant dosages. Coagulation of molasses effluent is a highly pH-dependent process, with better removal efficiency achieved at lower pH levels. Rapid mixing intensity, rather than rapid mixing time, has relatively strong influence on the settling characteristics of flocs formed. Lowering mixing intensity resulted in increasing settling rate but the accumulation of floating flocs. When used as coagulant aids, synthetic polyelectrolytes showed little effects on the improvement in organic removal. On the other hand, cationic polyacrylamide was observed to substantially enhance the settleability of flocs as compared to anionic polyacrylamide. The effects of rapid mixing conditions and polymer flocculants on the coagulation performance were discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient-rich effluents caused rising concern due to eutrophication of aquatic environment by utilization of a large amount of formula feed. Nutrient removal and water quality were investigated by planting aquatic vegetable on artificial beds in 36-m(2) concrete fishponds. After treatment of 120 days, 30.6% of total nitrogen (TN) and 18.2% of total phosphorus (TP) were removed from the total input nutrients by 6-m(2) aquatic vegetable Ipomoea aquatica. The concentrations of TN, TP, chemical oxygen demand (COD) and chlorophyll a in planted ponds were significantly lower than those in non-planted ponds (P<0.05). Transparency of water in planted ponds was much higher than that of control ponds. No significant differences in the concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3-N) and nitrite nitrogen (NO2--N) were found between planted and non-planted ponds. These results suggested that planting aquatic vegetable with one-sixth covered area of the fishponds could efficiently remove nutrient and improve water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textile wastewater is commonly treated with activated sludge process technology. However, its treatment performance has not been demonstrated to be very effective. In this study, the effects of micronutrient thiamine on removal efficiencies of dissolved organic carbon (DOC) and chemical oxygen demand (COD) of textile wastewater in a batch test, together with its effect on the oxygen uptake rate (OUR) of activated sludge, were evaluated. Significant improvements were observed in the removal rates of DOC, COD and OUR with 121%, 156% and 121% of those of the control, respectively, when 0.5-2.0 mg/L thiamine was added to the wastewater treatment system. Thiamine could be probably used to improve the treatment performance of textile wastewater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.