124 resultados para ISLAND-ARC
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E-W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky-hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N-S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E-W fan channel was probably affected by the E-W fault and the basement morphology.
Resumo:
A mass of geological, geophysical and geochemical data and information from the Okinawa Trough area are collected for comprehensive research in the study area from East China to Okinawa Trough and then to Ryukyu Island Are region. According to the seismic tomography result (P and S wave) and the processing result of free-air and Bouguer gravity anomaly and magnetic anomaly data in the study area, the comprehensive interpretation is carried out. The Moho depth distribution of the study area is obtained by the inversion calculation based on gravity data using the Harmonious Series method. The crust properties are analyzed. Meantime, some Cenozoic basalt data from Kuandian (NE China), Hannuoba (North China), Minxi (South China), Penghu Islands (Taiwan Strait), Okinawa Trough and Japan Island Arc regions are chosen to make the comparison research on element- isotopes. The result indicates that the lithosphere thickness in the Okinawa Trough area has obviously decreased, where a Low -velocity layer of upper-mantle has reached the Moho interface and the metasometized asthenosphere has formed. The research result on element- isotopes shows that the characteristic of the crust in the Okinawa Trough area is different from that in East China area and the Ryukyu Island Arc area. It is considered that the crust in the Okinawa Trough area belongs to the transition type, which is quite similar to the feature of the oceanic crust.
Resumo:
Zenisu deep-sea channel originated from a volcanic arc region, Izu-Ogasawara Island Arc, and vanished in the Shikoku Basin of the Philippine Sea. According to the swath bathymetry, the deep-sea channel can be divided into three,segments. They are Zenisu canyon, E-W fan channel and trough-axis channel. A lot of volcanic detritus were deposited in the Zenisu Trough via the deep-sea channel because it originated from volcanic arc settings. On the basis of the swath bathymetry, submersible and seismic reflection data, the deposits are characterized by turbidite and debrite deposits as those in the other major deep-sea channels. Erosion or few sediments were observed in the Zenisu canyon, whereas a lot of turbidites and debrites occurred in the E-W channel and trough axis channel. Cold seep communities, active fault and fluid flow were discovered along the lower slope of the Zenisu Ridge. Vertical sedimentary sequences in the Zenisu Trough consist of the four post-rift sequence units of the Shikoku Basin, among which Units A and B are two turbidite units. The development of Zenisu canyon is controlled by the N-S shear fault, the E-W fan channel is related to the E-W shear fault, and the trough-axis channel is related to the subsidence of central basin.
Resumo:
The variolitic andesite from the Susong County in the Dabie Mountains implies that it was erupted in water. The mineralogy of the varioles is primarily radiate plagioclase (albite sind oligoclase), with little pyroxene, hornblende and quartz (derived from alteration). The pyroxene, hornblende and quartz are in the interstices between plagiocalse. The matrix consists of glass, hornblende, chlorite, epidote and zoisite. It is clearly subjected an extensive alteration. The andesite has an uncommon chemical composition. The SiO2 content is about 56.8%, TiO2 = 0.9%, MgO = 6.4%, Fe2O3 (tot) = 6.7%similar to 7.6%, 100Mg/(Mg + Fe) = 64.1 similar to 66.2. Mg-# is significantly high. The andesite has high abundances of large-lithophile trace elements (e.g. K, Ba. Sr, LREE), e.g. La/Nb = 5.56 similar to 6.07, low abundances of high-strength-field elements (HFSE e.g. Ta, Nb, P, Ti), particularly Ta and Nb strongly depleted. These are consistent with the characteristics of subduction-related magmas. In the spider diagram of trace elements, from Ce to right hand, the abundances of elements decrease quickly, showing a character of the continental margins. There has a strong punishment of light-rare-earth elements, with a significant diffraction of REEs (the mean value of (La/Yb)(N) is 32.84). No Eu anomaly, but there are anomaly high (La/Yb)(N) = 28.63 similar to 36.74, (La/Y)(N) = 70.33 similar to 82.4. The elements Y and Yb are depleted greatly, Y<20
Resumo:
The characteristics and distribution patterns of detrital minerals (0.063 similar to 0.125 mm) in marine sediments provide a significant indicator for the identification of the origin of sediment. The detrital mineral composition of 219 surface sediment samples was analysed to identify the distribution of sediments within the western Philippine Sea. The area can be divided into three mineral provinces: ( 1) province east of the Philippine Trench, the detrital minerals in this province are mainly composed of calcareous or siliceous organisms, with the addition of volcanogenic minerals from an adjacent island arc; (II) middle mineral province, clastic minerals including feldspar, quartz and colorless volcanic glass, sourced from seamounts with intermediate-acid volcanic rock, or erupting intermediate-acid volcano; (III) province west of the Palau-Kyushii Ridge, the matter provenance within this province is complex; the small quantity of feldspar and quartz may be sourced from seamounts or erupting volcano with intermediate - acid composition, with a component of volcanic scoria sourced from a volcano erupting on the Palau-Kyushu Ridge. it is suggested that, ( I) Biogenic debris of the study area is closely related to water depth, with the amount of biogenic debris controlled by carbonate lysocline. (2) Volcaniclastic matter derived from the adjacent island are can be entrained by oceanic currents and transported towards the abyssal basin over a short distance. The weathering products of volcanic rocks of the submarine plateau ( e. g. I Benham Plateau) and adjacent ridges provide an important source of detrital sedimentation, and the influence scope of them is constrained by the intensity of submarine weathering. (3) Terrigenous sediments from the continent of Asia and the adjacent Philippine island arc have little influence on the sedimentation of this study area, and the felsic mineral component is probably sourced from volcanic seamounts of intermediate-acid composition.
Resumo:
Processing of a recently acquired seismic line in the northeastern South China Sea by Project 973 has been conducted to study the character and the distribution of gas hydrate Bottom-Simulating Reflectors (BSRs) in the Hengchun ridge. Analysis of different-type seismic profiles shows that the distribution of BSRs can be revealed to some extents by single-channel profile in this area, but seismic data processing plays an important role to resolve the full distribution of BSRs in this area. BSR' s in the northeastern South China Sea have the typical characteristics of BSRs on worldwide continental margins: they cross sediment bed reflections, they are generally parallel to the seafloor and the associated reflections have strong amplitude and a negative polarity. The characteristics of BSRs in this area are obvious and the BSRs indicate the occurrence of gas hydrate-bearing sediments in the northeastern South China Sea. The depth of the base of the gas-hydrate stability zone was calculated using the phase stability boundary curve of methane hydrate and gas hydrate with mixture gas composition and compared with the observed BSR depth. If a single gradient geothermal curve is used for the calculation, the base of the stability zone for methane hydrate or gas hydrate with a gas mixture composition does not correspond to the depth of the BSRs observed along the whole seismic profile. The geothermal gradient therefore changes significantly along the profile. The geothermal gradient and heat flow were estimated from the BSR data and the calculations show that the geothermal gradient and heat flow decrease from west to east, with the increase of the distance from the trench and the decrease of the distance to the island arc. The calculated 2 heat flow changes from 28 to 64 mW/m(2), which is basically consistent with the measured heat flow in southwestern offshore Taiwan.
Resumo:
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
Resumo:
Jiamusi Massif is an important tectonic unit in Northeast China. It’s significant for understanding the evolution of Paleo-Asian Ocean and reconstruction of the tectonic framework of Northeast China. Mudanjiang area is located in the southern margin of Jiamusi Massif and is the key to understand the evolution of Jiamusi Massif. However, the detailed geological research for Mudanjiang area has long been deficient in many important problems, such as the tectonic components of the Mudanjiang collision zone (MCZ), the age of collisional complexes and the scenario of tectonic evolution. Based on the lithology, geochemistry and the SHRIMP zircon U-Pb geochronology in Mudanjiang area, our new data and results come to some constraints for the tectonic reconstruction of MCZ as follows: 1) It is identified that the former suggestion, which the so-called “Heilongjiang Group” in Mudanjiang area is the vestige of oceanic crust, is correct. The oceanic relics represent the Neo-Proterozoic-Early Paleozoic oceanic basins based on the SHRIMP zircon U-Pb geochronology. 2) One sheet of gabbroic complex with oceanic island-type geochemical signature was discovered by this work in Mudanjiang area. 3) It is verified that the Proterozoic concordant U-Pb ages of the migmatites developed along the southern margin of Jiamusi massif, which represent the events of magmatic intrusion, as the direct evidence for the existence of the Proterozoic crystalline basements of the Jiamusi Massif. Based on geochronology, we suggest that the migmatization and coeval S-type granite magmatism of the southern margin of Jiamusi Massif took place about 490Ma. 4) The island arc complex has been found in the Heilongjiang Group, and the oceanic relics was found distributing on both sides, as provided important constraint for the tectonic reconstruction of the MCZ. 5) ~440Ma metamorphic event and coeval post-collisional granite magmatism have been firmly identified in the MCZ and its southern neighboring area. Together with previous data obtained by other researchers, our conclusions on the reconstruction of the tectonic architecture and evolution of the MCZ as follows: 1) The orogenic assemblages developed in the Mudanjiang collisional zone are featured by a sequence of ancient active continental margins and ensuing orogenic processing. The Mashan Group is the reworking basement of Jiamusi Massif, whereas the Heilongjiang Group represents arc and oceanic complexes characterized by imbricate deep-seated sliced and slivering sheets due to multi-phases of thrusting and nappe stacking. 2) The northern sub-belt of MCZ is probably the arc-continent collisional boundary related to the closure of main oceanic basin. The collisional age can be constrained by the events of syn-orogenic migmatization of migmatite, coeval S-type granite magmatism and the related granulite-facies metamorphism. Therefore, we suggested the collisional age of northern sub-belt is probably Cambrian-Early Ordovician. The extensive granulite-facies metamorphism of the Mashan Group in Jiamusi Massif, as affirmed by former works, was probably related with the collisional event. 3) The southern sub-belt of the MCZ was possibly related with the closure of back-arc basin. We presumed that the collisional age of southern sub-belt is about Ordovician-Early Silurian according to the ~440Ma extensive metamorphism and the occurrence of coeval post-collisional granite magmatism. 4) The extant structural architecture of the MCZ is related to the multi-phases of intra-continental superimposition, which is characterized by the Mesozoic nappe structure.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.
Resumo:
Hersai porphyry copper deposit(PCD) of eastern junggar, newly discovered copper deposit, is located at the eastern segment of the Xiemisitai-Kulankazigan-Zhifang-Qiongheba Paleozoic island arc, Eastern Junggar. The Hersai PCD is developed in a intrusive complex, characterized by intensive and multiform hydrothermal alteration, including potassic alteration, silification, chloritization,sericitization,kaolinitization and carbonatization. Granodiorite, grandiorite porphyry, granite and concealed explosion breccia are hosts of the ore bodies containing veinlet and disseminated ore. Ore-bearing granite (ZK107-1-9), granodiorite (ZK107-1-9) and Ore-barren granodiorite (HES2-1) are selected to date zircon U-Pb age by SHRIMP method, and have an age of 429.4±6.4Ma ,413.0±3.4Ma and 411.1±4.8Ma, respectively, showing that they were emplaced from Late Silurian to Early Devonian. In addition, sample ZK107-1-9 has some hydrothermal zircons with a weighted mean 206Pb/238U age of 404.9±3.7Ma which is interpreted to be related to the granodiorite porphyry. Re-Os dating of five molybdenite samples yielded a weighted average model age of 408.0±2.9Ma, indicating the metallogenic epoch of the Hersai PCD. The ore-forming age is close to the petrogenic time of garnodiorite (411-413Ma), this suggests the ore-forming porphyry is most possiblely granodiorite porphyry. Systematic major - trace elements and Rb-Sr-Sm-Nd-Pb-Hf isotopic characteristics were studied. Analysis results show that these intrusives have some interesting and special characteristics, as following:1) containing both calc-alkaline rocks and high potassium calc-alkaline rocks ; 2) have some characteristics of adakite, but not totally, such as much lower La/Yb ratios and no Eu anomaly or just faint Eu anomaly; 3) have an initial 87Sr/86Sr ratios(0.703852-0.704565) similar to that of BSE, positive εNd(t) values between 6.1 and 7.4, the initial 206Pb/204Pb values (17.576-17.912), 207Pb/204Pb values (15.400-15.453) , 208Pb/204Pb values (37.252-37.466) , and high εHf(t) values (10.2-15.4) close to the value of depleted mantle. These geochemical features suggest that these igneous rocks in the Hersai area not only have some characteristics of island arc, but also some characteristics that only appear in the continental margin arc. It is suggested that Hersai PCD is formed in the subduction setting by the partial melting of young crust. These works and advancements mentioned in the paper are helpful to understand the deposit geology, geochemistry and metallogenesis of Hersai PCD. It is also significant to understand mineralization and tectonic setting in the Qiongheba area.
Resumo:
Central Xiemisitai is located on the northwest edge of the Junggar Basin, bounded on the north by Sawuer Mountain, and southward Junggar Basin. Geotectonically, it is within the Chengjisi-Ximisitai-Santanghu island arc of Late Paleozoic, between Siberian and Junggar plates. The volcanics in this area mainly consist of acidic volcanic lava, rock assemblage of esite, dacite, and rhyolite, and the transitional phase is comparatively developed. Besides, Si2O of volcanics here covers a large range of 53.91-79.28t %, K2O of 1.71-6.94t%, and Na2O of 2.29-5.45t%, which is a set of metaluminous- peraluminous high K calc-alkaline to calc alkaline mid-acidic volcanic series. In addition, the volcanics are potassic to high-potassic assemblage, with slight shoshonite in. The REE curve of volcanics in central Xiemisitai is rightward and smooth, inclining to LREE enrichment, which reveals the characteristics of island-arc volcanics. Through the lithology changing from neutral to acidic, the negative anomaly of Eu is increasing. The volcanics here deplete HFSE such as Nb, Ti, P, etc., but relatively rich in LILE like Rb, K, Th, etc., possessing geochemistry characteristics of arc volcanics, which means that the lava source region is watery, under the meta-somatic contamination of subducted components. Moreover, high Ba and Sr show volcanics in epicontinental arc environment, and their contemporaneous granitoid rocks are also marked with the characteristics of volcanic arc granite. In central Xiemisitai, the volcanics zircon age of volcanic rhyolite is 422.5Ma± 1.9Ma, mid-late Silurian. Only one sample zircon has been measured for the present, not very convincing, so volcanics here might not come from Devonian volcanism. Consequently, further confirming the volcanic age will play a key role in the research on the beginning of volcanism in Xiemisitai area and even North Xinjiang. This area includes three copper mineralization types: a) from andesite fracture; b) from rhyolite fracture broken zone, with the copper mineralization distributed by veins along the fissure; and c) from quartz veins. The mineralization of earth surface in S24 ore spot is intensive, and the primary geochemistry reconnaissance anomaly is fairly good. According to display data, the maximum content of Cu is as high as 0.9% and as low as 0.05%. Also, ore-control fracture structure is having a considerable scale in the strike of fracture both horizontally and vertically downwards, and the result of the geophysics stratagem EH-4 system reveals obvious low-resistivity anomaly. As a result, we believe that the S24 plot is expected to be a volcanic copper deposit target area.
Resumo:
The Chinese Altai is one of the most important volcanogenic massive sulfide (VMS) deposit districts in China. All orebodies were lenticular or bedded and stratabounded by a suite of early Devonian volcanic-sedimentary rocks. Hydrothermal feeder zones developed under some of the orebodies. All the ores are massive or laminated, and show typical characteristics of VMS deposit. Based on the mineralizing time and the metal assembles, we divide 3 metallogenic stages: 1, Fe orefroming stage associated with basaltic and sedimentary rocks during very early Devonian; 2, Cu-Pb-Zn oreforming stage associated with rhyolitic and sedimentary rocks during early Devonian; 3, Cu-Zn oreforming stage in the dacitic and basaltic rocks during mid. Devonian. The hosting rocks for all orebodies are different, but they show very similar geochemical and isotopic characteristics. All the felsic rocks show enriched lighted rare earth elements (REE) patterns (La/Yb>5), and with an obvious Eu negative anomalies (Eu/Eu*<0.6). In the meanwhile, all the mafic rocks show flat REE pattern and no Eu anomalies. The Ashele basalt show an apparent Ce negative anomalies (Ce/Ce* <0.76), All the volcanic roks in Chinese Altai show the decoupled property between the high field strength elements (HFSE) and large ion lithophile elements (LILE). The negative Nb, Ta characteristics with respect to adjacent elements indicate that subduction-modified source. The Nd(t) of the hosting rocks for all orebodies changed in a small range (-1.5~5), and the (87Sr/86Sr)i change in a big range. The initial Sr value of the hosting rocks in Mengku and Tiemuerte are obviously affected by the seawater (0.705~0.710), and initial Sr values of hosting rocks Ashele change in a small range (0.704~0.706). All Sr-Nd isotopes of ores have the same range with the hosting rocks, indicating that both the ores and volcanic rocks have the same island arc source. The mean sulfur isotopes of sulfides from Ashele and Mengku are 6.2‰ and 3.4‰, respectively, indicating a deep magmatic source. However, the sulfur isotopes of sulfides from Keketale, Tiemuerte and Keyinbulake changed in -15.8‰~9.9‰, -23.5‰~1.87‰, -8.3‰~1.6‰, respectively. And the big sulfur isotope range indicated that the sulfur of the ores was a combination biogenic and magmatic source. All volcanic rocks from the VMS deposits in the southern Chinese Altai show a typical subduction related environments. Based on the regional and locally geological evidence, here we propose that the southern Chinese Altai is an island arc system, and all VMS deposits formed during the lateral accretion process. No VMS deposit formed during the formation of the island arc during Silurian; Fe VMS deposit formed during the beginning of the opening of the backarc basin in very early Devonian; Cu-Pb-Zn VMS deposits formed during the mature stage of the backarc basin in early Devonian; at last the Cu-Zn VMS deposit formed during the rifted stage of the island arc itself.