11 resultados para ION CHROMATOGRAPHY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
For nearly three decades, organogermanium compounds have become increasingly of interest owing to their extensive physiological and pharmaceutical activity. In this paper, two new high performance ion chromatographic methods for separation and determination of three kinds of organogermanium compounds beta-carboxyethylgermanium sesquioxide (I), beta-(alpha-methyl)-carboxyethylgermanium sesquioxide (II) and d-(beta-carboxyethyl)germanium hydroxide (III) were proposed. A Dionex DX-300 ion chromatograph equipped with a Dionex FED-II pulsed electrochemical detector (conductivity mode), and a Dionex AI-450 chromatography workstation was employed. The separation was achieved by using ion-exchange or ion-exclusion mechanism. The detection limits(S/N=3, expressed as germanium) for the three compounds were all below sub- mu g/mL level. The methods have been applied to the analysis of tonic oral drinks, and the average recoveries for the three compounds range from 95 - 108%. The results obtained were in agreement with those of hydride generation atomic fluorescence spectrometry (HG-AFS).
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.
Resumo:
An off-line chelation system combined with ICP-MS technique was developed for the quantitative determination of trace elements in seawater, namely V, Co, Ni, Cu, Zn, Mo, Cd, Pb, U and rare earth elements(REEs). The system was built based on an ion chromatography equipped with MetPac((R)) CC-I chelation columns which had a strong selective chelation to these target elements within a pH range 5.2-5.6. Acidified seawater samples and NH4Ac(2 mol/L) were blended to meet suitable pH before being injected into the chelation column, thus target elements were retained while alkali and alkaline metals were excluded. Then chelated elements were eluted by HNO3 (1 mol/L) and samples were collected for ICP-MS analysis. Varying the ratio of input( gen. 200 mL) to output( gen. 5 mL), the target elements which were concentrated as 40 times as their concentrations were far beyond instrumental quantification limits. At last, a certificated seawater CASS-4 was introduced and our detected values were in good agreement with those certified values.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
The chlorination reaction of Li2CO3 with NH4Cl has been studied in detail by a series of thermal analysis methods. When NH4Cl/Li2CO3 mole ratio equals 4, Li2CO3 can be transformed into LiCl quantitatively in a stream of Ar gas flow. All residual NH4Cl is decomposed completely at 400 degrees C and carried away from the reaction cell by Ar gas.Analysis by X-Ray diffraction and Ion Chromatography show that there are almost no NH4Cl remained in The LiCl product. It is interested that the chlorination reaction can be applied to the determinations of phase diagram by thermal analysis method and the preparation of Al-Li alloy by electrolysis in molten salt.
Resumo:
Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4+, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4+ remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.
Resumo:
It was the objective of this study to compare the suitability of different extractants for predicting the availability of sulfur (S) in natural grassland in a sulfur response trial on three different soil types in the Inner Mongolia steppe of China. For soil analysis, seven different extractants have been employed. The inorganic SO4-S concentration was determined by ion chromatography. Additionally, in the Ca(H-2-PO4)(2) extract the total soluble S was determined employing turbidimetry. Weak salt solutions (0.15% CaCl2, Ca(H2PO4)(2), and KH2PO4) extracted similar amounts Of SO4-S. Extraction with 0.025 M KCl provided the lowest SO4-S values. Deionized water dissolved significantly more SO4-S in the control plots than most weak salt extractants. The concentration of soluble organic S decreased in the control plots after 100 days of plant growth, indicating that the organic S pool contributed significantly to the S nutrition of the forage crops. Significant relationships among the SO4-S in the soil determined in different extracts and crop yield, sulfur content in the forage, and total sulfur uptake were only found for the Ca(H2PO4)(2) extract. In general, the correlation coefficients proved to be unsatisfactory for field experimentation.
Resumo:
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for effluents of textile finishing industry ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the COD. However, little is known about the reaction intermediates and products formed during ozonation. This work focuses on the oxidative degradation of purified (>90%), hydrolyzed Reactive Red 120 (Color Index), a widely used azo dye in the textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the dye in ultra pure water was performed in a laboratory scale cylindrical batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (53 5 nm), was almost complete after 150 min with an ozone concentration of 12.8 mg/l. The TOC/TOC0 ratio was about 74% and the COD was diminished to 46% of the initial value. The BOD5/COD ratio increased from 0.01 to 0.14. To obtain detailed information on the reaction processes during ozonation and the resulting oxidation products organic and inorganic anions were analyzed. Oxidation and cleavage of the azo group yielded nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused an increase in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.