208 resultados para INTERMETALLIC COMPOUNDS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Cubic LaNi2 Laves phase has been synthesized under high pressure. The effects of temperature and pressure on the stability of the Laves phase have been studied. High pressure also induces the phase transitions from intermetallic compounds La2Ni3 and LaNi2.286 to the Laves phase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reduction of Y(III) ions in molten chloride is known to be a one-step three electron reaction [1, 2, 3], but a voltammogram of YCl3 in molten LiCl-KCl-NaCl at a nickel electrode shows at least two reduction peaks of Y(III) ions, indicating the possibility of formation of Ni-Y intermetallic compounds. Using a galvanostatic electrolysis method, samples were prepared at several current densities at 450, 500, 600 and 700-degrees-C, respectively, and were identified with X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The results show that Ni2Y, Ni2Y3 and NiY can be produced by electrolysis and Ni2Y is found to be the predominant Ni-Y intermetallic compound under the experimental conditions. Nickel appears to diffuse in Ni2Y faster than yttrium, and the diffusion process is the rate determining step during Ni2Y formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic and the magnetic structure of the Nd2Fe17N1 phase in the family of Nd-Fe-N ternary compounds have been calculated using the first-principles, spin-polarized orthogonalized linear-combination-of-atomic-orbitals method. Results are presented in the form of site-decomposed and spin-projected partial density of states. The occupation sites of the three N atoms are determined by an average radial distribution of all possible N site configurations. Both cases of N occupying the 3b and the 18g sites are studied. The results indicate that the 6c Fe sites have the maximum and the 18h Fe sites have the minimum local moments. This is in good agreement with experiment. It is concluded that the influence on the local moment due to lattice expansion is less important compared to that due to interatomic interaction between the N atom and its neighbors. The results also show the important role of N atoms in raising the Curie temperature of this compound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetic properties of the Nd2Fe17-xSix intermetallic compounds are studied by means of spin-polarized supercell calculations in which the selected sites of substitution are close to the situations in real samples. It is shown that the average Fe moment increases with x and saturates near x = 3. This correlates quite well with the experimental dependence of Te on x. The difference between supercell and unit cell calculations are pointed out and the influence of Si atoms on the density of states of the nearby Fe atoms is emphasized. (C) 1997 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-pressure die-cast (HPDC) Mg-4Al-4RE-0.4Mn (RE = La, Ce) magnesium alloys were prepared and their microstructures, tensile properties, and creep behavior have been investigated in detail. The results show that two binary Al-Ce phases, Al11Ce3 and Al2Ce, are formed mainly along grain boundaries in Mg-4Al-4Ce-0.4Mn alloy, while the phase composition of Mg-4Al-4La-0.4Mn alloy contains only alpha-Mg and Al11La3. The Al11La3 phase comprises large coverage of the grain boundary region and complicated morphologies. Compared with Al11Ce3 phase, the higher volume fraction and better thermal stability of Al11La3 have resulted in better-fortified grain boundaries of the Mg-4Al-4La-0.4Mn alloy. Thus higher tensile strength and creep resistance could be obtained in Mg-4Al-4La-0.4Mn alloy in comparison with that of Mg-4Al-4Ce-0.4Mn. Results of the theoretical calculation that the stability of Al11La3 is the highest among four Al-RE intermetallic compounds supports the experimental results further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crystallographic and magnetic properties of intermetallic compounds (PrxSm1-x) Mn2Si2 (x = 0 similar to 0.80) have been investigated by X-ray powder diffraction, XPS and magnetic measurements. All the compounds crystallize in ThCr2Si2-type structure. Substitution of Pr for Sm leads to the increase of the lattice constants and the transition from antiferromagnetism (AFM) to ferromagnetism (FM). The valence-fluctuation in the compounds was observed and the relation between the change of electron binding energy and magnetic properties was also discussed preliminarily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical reduction of yttrium ion on a molybdenum electrode in a LiCl-KCl-NaCl eutectic melt at 723 K was found to be almost reversible and to proceed by a one-step three electron reaction. The diffusion coefficient D of the Y(III) ion was measured to be (3.3 +/- 0.4) x 10(-6) cm2 s-1 by cyclic voltammetry, (5.0 +/- 0.9) x 10(-6) cm2 s-1 by the rotating disk electrode method, and (7.1 +/- 0.7) x 10(-6) cm2 s-1 by chronopotentiometry. The D values obtained by the latter two methods are in fairly good agreement with each other. The rather low D value obtained by cyclic voltammetry might be attributed to the fact that yttrium metal can dissolve slightly in the chloride melt. The standard potential of Y(III)/Y(0) couple was determined to be (-3.174 +/- 0.006) V (vs. Cl2/Cl-) by open-circuit potentiometry, (-3.15 +/- 0.02) V (vs. Cl2/Cl-) by the rotating disk electrode method and (-3.16 +/- 0.02) V (vs. Cl2/Cl) by chronopotentiometry. These three values are in good agreement with each other. Several types of Ni-Y intermetallic compounds were found to be formed on a nickel electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process of laser cladding Ni-CF-C-CaF2 mixed powders to form a multifunctional composite coatingd on gamma-TiAl substrate was carried out. The microstructure of the coating was examined using XRD, SEM and EDS. The coating has a unique microstructure consisting of primary dendrite or short-stick TiC and block Al4C3 carbides reinforcement as well as fine isolated spherical CaF2 solid lubrication particles uniformly dispersed in the NiCrAlTi (gamma) matrix. The average microhardness of the composite coatings is approximately HV 650 and it is 2-factor greater than that of the TiAl substrate. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assisted by a mechanical alloying and high-pressure technique, a new W4Mg intermetallic was formed. W4Mg amorphous mixture was obtained by mechanically alloying the pure metal powder mixtures at designated composition for 20 h. A new compound was found after the subsequent high-pressure and high-temperature treatment. W4Mg intermetallic was identified as a cubic structure and the lattice parameter was a=0.4150 nm. The synthesis mechanism is also discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of a surface plastic deformation method a nanocrystalline (NC) intermetallic compound was in situ synthesized on the surface layer of bulk zirconium (Zr). Hardened steel shots (composition: 1.0C, 1.5Cr, base Fe in wt.%) were used to conduct repetitive and multidirectional peening on the surface layer of Zr. The microstructure evolution of the surface layer was investigated by X-ray diffraction and scanning and transmission electron microscopy observations. The NC intermetallic layer of about 25 gm thick was observed and confirmed by concentration profiles of Zr, Fe and Cr, and was found to consist of the Fe100-xCrx compound with an average grain size of 22 nm. The NC surface layer exhibited an extremely high average hardness of 10.2 GPa. The Zr base immediately next to the compound/Zr interface has a grain size of similar to 250 nm, and a hardness of similar to 3.4 GPa. The Fe100-xCrx layer was found to securely adhere to the Zr base. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface mechanical attrition treatment (SMAT) technique was developed to synthesize a nanocrystalline (NC) layer on the surface of metallic materials for upgrading their overall properties and performance. In this paper, by means of SMAT to a pure zirconium plate at the room temperature, repetitive multidirectional peening of steel shots (composition (wt%): 1C, 1.5Cr, base Fe) severely deformed the surface layer. A NC surface layer consisting of the intermetallic compound FeCr was fabricated on the surface of the zirconium. The microstructure characterization of the surface layer was performed by using X-ray diffraction analysis, optical microscopy, scanning and transmission electron microscopy observations. The NC surface layer was about 25 mu m thick and consisted of the intermetallic compound FeCr with an average grain size of 25 +/- 10 nm. The deformation-induced fast diffusion of Fe and Cr from the steel shots into Zr occurred during SMAT, leading to the formation of intermetallic compound. In addition, the NC surface layer exhibited an ultrahigh nanohardness of 10.2 GPa.