2 resultados para INTELLECTUAL PROPERTY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
PetroChina and other national petroleum incorporations need rigorous procedures and practical methods in risk evaluation and exploration decision at home and abroad to safeguard their international exploration practice in exploration licence bidding, finding appropriate ratio of risk sharing with partners, as well as avoiding high risk projects and other key exploration activities. However, due to historical reasons, we are only at the beginning of a full study and methodology development in exploration risk evaluation and decision. No rigorous procedure and practical methods are available in our exercises of international exploration. Completely adopting foreign procedure, methods and tools by our national incorporations are not practical because of the differences of the current economic and management systems in China. The objective of this study is to establish a risk evaluation and decision system with independent intellectual property right in oil and gas exploration so that a smooth transition from our current practice into international norm can take place. The system developed in this dissertation includes the following four components: 1. A set of quantitative criteria for risk evaluation is derived on the basis of an anatomy of the parameters from thirty calibration regions national wide as well as the characteristics and the geological factors controlling oil and gas occurrence in the major petroleum-bearing basins in China, which provides the technical support for the risk quantification in oil and gas exploration. 2. Through analysis of existing methodology, procedure and methods of exploration risk evaluation considering spatial information are proposed. The method, utilizing Mahalanobis Distance (MD) and fuzzy logic for data and information integration, provides probabilistic models on the basis of MD and fuzzy logic classification criteria, thus quantifying the exploration risk using Bayesian theory. A projection of the geological risk into spatial domain provides a probability map of oil and gas occurrence in the area under study. The application of this method to the Nanpu Sag shows that this method not only correctly predicted the oil and gas occurrence in the areas where Beibu and Laoyemiao oil fields are found in the northwest of the onshore area, but also predicted Laopu south, Nanpu south and Hatuo potential areas in the offshore part where exploration maturity was very low. The prediction of the potential areas are subsequently confirmed by 17 exploration wells in the offshore area with 81% success, indicating this method is very effective for exploration risk visualization and reduction. 3. On the basis of “Methods and parameters of economic evaluation for petroleum exploration and development projects in China”, a ”pyramid” method for sensitivity analysis was developed, which meets not only the need for exploration target evaluation and exploration decision at home, but also allows a transition from our current practice to international norm in exploration decision. This provides the foundation for the development of a software product “Exploration economic evaluation and decision system of PetroChina” (EDSys). 4. To solve problem in methodology of exploration decision, effort was made on the method of project portfolio management. A drilling decision method was developed employing the concept of geologically risked net present value. This method overcame the dilemma of handling simultaneously both geological risk and portfolio uncertainty, thus casting light into the application of modern portfolio theory to the evaluation of high risk petroleum exploration projects.
Resumo:
The Stack Spontaneous Potential (SSP) is a direct hydrocarbon location technology and a new hydrocarbon detection method with independent intellectual property. A subsurface hydrocarbon accumulation associated with the upward hydrocarbon micro seepage induces a relatively strong negative potential abnormal zone, of which the anomaly can be measured on the surface with specially designed instruments through careful field measuring procedures. With special software programmed according to a unique geochemical and geophysical model, the original data are analyzed, processed and interpreted on the computer, and then on a series of resulting anomaly distribution maps and/or profiles, the favorable surface locations of the hydrocarbon accumulations can be easily identified. The study of the SSP has been started since 1989, and especially from 1996 to 1997, both profile and area tests were conducted in the Daqing Oilfield. On the testing line of 15kms, there are 6 wells in total, among which some are oil-producing wells, and some are water-producing wells. The final matching ratio of the favorable oil well locations and the possible water well locations predicted by the SSP to those of known wells was up to 83 percent. In the area test, of which the acreage is 800 km2, the matching ratio compared with the existing wells was 87 percent; furthermore, regarding to wells subsequently drilled after the test, the matching ratio was 85 percent. The matching ratio in the development area is more about 10 percent than those of in exploration area. The reason is that, comparing the exploration area, the development area acreage is less and the container rocks are more simplex. In development area there is not so much interference of SSP also. Since 1997 the SSP has been tested and applied all over China to a number of hydrocarbon bearing basins and known oil fields, including the Daqing, Jiangsu, Changqing, Shengli, Nanyang, Jianghan and Zhongyuan Oilfields, only to name a few. The SSP surveys in total areas of over 10,000km2 in more than 30 regions in China so far have been completed in various exploration and development stages, the satisfactory outcomes of which have further evidenced that the dependence between the SP anomaly and abundance of hydrocarbon. Up to date, a substantial amount of successful tests and actual surveys finished in exploration and development practices have evidenced that the SSP is significantly more reliable in comparison with any other similar direct hydrocarbon indication technique generally known to the oil industry, such as the Redox. The SSP can be applied to search for almost all kinds of hydrocarbon accumulations, regardless of the type of traps, such as structural, stratigraphic, buried hill traps, and so on; however, it is interesting to be noted that the SSP seems to be particularly effective in detecting the stratigraphic oil traps according to our practices. On the other hand, there is virtually no surface geographical constrains in terms of field data acquisition, except for those water covered areas, because of the inherent characteristics of the technology itself. Furthermore, utilizing the SSP requires no special considerations to subsurface geological conditions in regard to formation resistivity, since the SSP measurements will not be influenced by either overly high or overly low resistivity of formations lying above the hydrocarbon accumulations. There are two kind of theory, of which, as we know one is called hypbyssal theory such as "Redox"[61 the other is call plutonic theory such as cracking of hydrocarbon [8][9] and natural polarization [3], to describe the mechanism of SP anomaly of oil reservoir and to indicate that the dependence between the SP abnormality and abundance of hydrocarbon has be existed theoretically/The quantitative dependence, which has not been founded due to the complicity of container rocks, be discovered during the exploration and development practices is the crux to the quantitative analysis of SP Anomaly processing. Based on the thorough study of the complex of collector rocks, every kind of thickness of collector rock can be conversed to be a standard effective thickness; the thickness is called apparent effective thickness (AET). The conversation coefficient (ai, 1=1,2,3) could be determined by the variety of every collector rock storability (CRS). The discoveration of quantitative: dependence between AET and the amplitude of SSP, in the practices of exploration and development, is a promotion for the SSP supplied in the oil exploration, and make the data analysis forward to the quantitative stage.