107 resultados para Hydrologic cycle.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 108 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 106 and 4108 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An “optical dark area” (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.
Resumo:
In this paper, a ground hydrologic model(GHM) is presented in which the vapor, heat and momentum exchanges between ground surface covers (including vegetation canopy) and atmosphere is described more realistically. The model is used to simulate three sets of field data and results from the numerical simulation agree with the field data well. GHM has been tested using input data generated by general circulation model (GCM) runs for both the North American regions and the Chinese regions, The results from GHM are quite different from those of GHMs in GCMs. It shows that a more active concerted effort on the land surface process study to provide a physically realistic GHM for predicting the exchange between land and atmosphere is important and necessary.
Resumo:
This study was designed to comprehensively analyze the differential expression of proteins from human umbilical vein endothelial cells (HUVECs) exposed to tumor conditioned medium (TCM) and to identify the key regulator in the cell cycle progression. The HUVECs were exposed to TCM from breast carcinoma cell line MDA-MB-231, then their cell cycle distribution was measured by flow cytometer (FCM). The role of protein in cell cycle progression was detected via two-dimensional polyacrylamide gel electrophoresis (2-DE) and western blotting. Following the stimulation of TCM, HUVECs showed a more cells in the S phase than did the negative control group (ECGF-free medium with 20% FBS), but the HUVECs' level was similar to the positive control group (medium with 25 mug/ml ECGF and 20% FBS). Increased expression of cyclin D-1/E and some changes in other related proteins occurred after incubation with TCM. From our results, we can conclude that breast carcinoma cell line MDA-MB-231 may secrete soluble pro-angiogenic factors that induce the HUVEC angiogenic switch, during which the expression of cell cycle regulator cyclin D-1/E increases and related proteins play an important role in this process.
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
The scaling law of photoionization in few-cycle laser pulses is verified in this paper. By means of numerical solution of time-dependent Schrodinger equation, the photoionization and the asymmetry degree of photoionization of atoms with different binding potential irradiated by various laser pulses are studied. We find that the effect of increasing pulse intensity is compensated by deepening the atomic binding potential. In order to keep the asymmetric photoionization unchanged, if the central frequency of the pulse is enlarged by k times, the atomic binding potential should also be enlarged by k times, and the laser intensity should be enlarged by k(3) times. (c) 2005 Optical Society of America.
Resumo:
The propagation behaviors, which include the carrier-envelope phase, the area evolution and the solitary pulse number of few-cycle pulses in a dense two-level medium, are investigated based on full-wave Maxwell-Bloch equations by taking Lorentz local field correction (LFC) into account. Several novel features are found: the difference of the carrier-envelope phase between the cases with and without LFC can go up to pi at some location; although the area of ultrashort solitary pulses is lager than 2 pi, the area of the effective Rabi frequency, which equals to that the Rabi frequency pluses the product of the strength of the near dipole-dipole (NDD) interaction and the polarization, is consistent with the standard area theorem and keeps 2 pi; the large area pulse penetrating into the medium produces several solitary pulses as usual, but the number of solitary pulses changes at certain condition. (C) 2005 Optical Society of America.
Resumo:
We investigate the influence of ionization on the propagation and spectral effects of a few-cycle ultrashort laser pulse in a two-level medium. It is found that when the fractional ionization is weak, the production of higher spectral components makes no difference. However, when the two states are essentially depleted before the peak of the laser pulse, the impact of ionization on the higher spectral components is very significant.
Resumo:
The nonlinear dynamics of 1.6-mu m fs laser pulses propagating in fused silica is investigated by employing a full-order dispersion model. Different from the x-wave generation in normally dispersive media, a few-cycle spatiotemporally compressed soliton wave is generated with the contrary contributions of anomalous group velocity dispersion (GVD) and self-phase-modulation. However, at the tailing edge of the pulse forms a shock wave which generates separate and strong supercontinuum peaked at 670 nm. It is also the origin of conical emission formed both in time and frequency domain with the contribution of normal GVD at visible light.
Resumo:
The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.
Resumo:
A set of exact one-dimensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.
Resumo:
Using an unperturbed scattering theory, the characteristics of H atom photoionization are studied respectively by a linearly- and by a circularly- polarized one-cycle laser pulse sequence. The asymmetry for photoelectrons in two directions opposite to each other is investigated. It is found that the asymmetry degree varies with the carrier-envelope (CE) phase, laser intensity, as well as the kinetic energy of photoelectrons. For the linear polarization, the maximal ionization rate varies with the CE phase, and the asymmetry degree varies with the CE phase in a sine-like pattern. For the circular polarization, the maximal ionization rate keeps constant for various CE phases, but the variation of asymmetry degree is still in a sine-like pattern.
Resumo:
The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.
Resumo:
The effect of the mixing of pulsed two color fields on the generation of an isolated attosecond pulse has been systematically investigated. One main color is 800 nm and the other color (or secondary color) is varied from 1.2 to 2.4 mu m. This work shows that the continuum length behaves in a similar way to the behavior of the difference in the square of the amplitude of the strongest and next strongest cycle. As the mixing ratio is increased, the optimal wavelength for the extended continuum shifts toward shorter wavelength side. There is a certain mixing ratio of intensities at which the continuum length bifurcates, i.e., the existence of two optimal wavelengths. As the mixing ratio is further increased, each branch bifurcates again into two sub-branches. This 2D map analysis of the mixing ratio and the wavelength of the secondary field easily allows one to select a proper wavelength and the mixing ratio for a given pulse duration of the primary field. The study shows that an isolated sub-100 attosecond pulse can be generated mixing an 11 fs full-width-half-maximum (FWHM), 800 laser pulse with an 1840 nm FWHM pulse. Furthermore the result reveals that a 33 fs FWHM, 800 nm pulse can produce an isolated pulse below 200 as, when properly mixed. (c) 2008 Optical Society of America.
Resumo:
By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.