9 resultados para Hydrogen sulfide.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.
Resumo:
The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.
Resumo:
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O-2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O-2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O-2 was the main reason for H2S production. Maintaining the O-2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O-2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
It is reported for the first time that the performance of the electrochemical H2S sensor with the Nation membrane pre-treated with the concentrated H2SO4 as the solid electrolyte is much more stable than that for the sensor with the Nation membrane without H2SO4 pretreatment. The sensitivity of the sensor is about 2.92 muA/ppm. The response time of the sensor is about 9 s. The detection limit is about 0.1 ppm. Therefore, this kind of the electrochemical H2S gas sensor may be desirable for the practical application.
Resumo:
Elemental sulfur and hydrogen sulfide emitted offshore of northeastern Taiwan known to local fishermen for generations, but never studied until recently, are found to have originated from a cluster of shallow (< 30 m depth) hydrothermal vents. Among the mounds is a massive 6 m high chimney with a diameter of 4 m at the base composed of almost pure sulfur and discharging hydrothermal fluid containing sulfur particles. The sulfur in the chimney has a delta(34)S= 1.1 parts per thousand that is isotopically lighter than seawater. A yellow smoker at shallow depths with such characteristics has never been reported on anywhere else in the world. Gas discharges from these vents are dominated by CO2 (> 92%) with small amounts of H2S. Helium isotopic ratios 7.5 times that of air indicate that these gases originate from the mantle. High temperature hydrothermal fluids have measured temperatures of 78-116 degrees C and pH (25 degrees C) values as low as 1.52, likely the lowest to be found in world records. Low temperature vents (30-65 degrees C) have higher pH values. Continuous temperature records from one vent show a close correlation with diumal tides, suggesting rapid circulation of the hydrothermal fluids. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Adsorption and interaction of H2S/SO2 on titania as well as on alumina for comparison has been studied by temperature programmed desorption (TPD), infrared (IR) spectroscopy and temperature programmed electronic conductivity (TPEC) techniques. It was found that the adsorption of both H2S acid SO2 on TiO2 is much greater than on Al2O3. The electronic conductivity of TiO2 measured by TPEC varies significantly as adsorption and desorption takes place on TiO2, showing a strong interaction between TiO2 and adsorbates. At temperature above 200 degrees C, H2S or SO2 adsorbed on TiO2 can be converted into S, H2O and SO2 or SO3. While on the hydrogen treated TiO2, H2S is decomposed into S and H-2, SO2 into S. The active sites on TiO2 surface cannot be so strongly adsorbed by SO2 that it is much more resistant to the sulfation reaction. Unlike TiO2, Al2O3 only provides surface adsorption sites, which can be readily sulfated. The data obtained support one's understanding why TiO2 exhibits a better catalytic performance than that of Al2O3 as a Claus reaction catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.