224 resultados para Hybrid Recommendation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical-numerical method is presented for analyzing dispersion and characteristic surface of waves in a hybrid multilayered piezoelectric plate. In this method, the multilayered piezoelectric plate is divided into a number of layered elements with three-nodal-lines in the wall thickness, the coupling between the elastic field and the electric field is considered in each element. The associated frequency dispersion equation is developed and the phase velocity and slowness, as well as the group velocity and slowness are established in terms of the Rayleigh quotient. Six characteristic wave surfaces are introduced to visualize the effects of anisotropy and piezoelectricity on wave propagation. Examples provide a full understanding for the complex phenomena of elastic waves in hybrid multilayered piezoelectric media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Essential work of fracture (EWF) analysis is used to study the effect of the silica doping level on fracture toughness of polyimide/silica (PI/SiO2) hybrid films. By using double-edge-notched-tension (DENT) specimens with different ligament lengths, it seems that the introduction of silica additive can improve the specific essential work of fracture (w (e) ) of PI thin films, but the specific non-essential work of fracture (beta w (p) ) will decease significantly as the silica doping level increasing from 1 to 5 wt.%, and even lower than that of neat PI. The failure process of the fracture is investigated with online scanning electron microscope (SEM) observation and the parameters of non-essential work of fracture, beta and w (p) , are calculated based on finite element (FE) method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid finite compact (FC)-WENO schemes are proposed for shock calculations. The two sub-schemes (finite compact difference scheme and WENO scheme) are hybridized by means of the similar treatment as in ENO schemes. The hybrid schemes have the advantages of FC and WENO schemes. One is that they possess the merit of the finite compact difference scheme, which requires only bi-diagonal matrix inversion and can apply the known high-resolution flux to obtain high-performance numerical flux function; another is that they have the high-resolution property of WENO scheme for shock capturing. The numerical results show that FC-WENO schemes have better resolution properties than both FC-ENO schemes and WENO schemes. In addition, some comparisons of FC-ENO and artificial compression method (ACM) filter scheme of Yee et al. are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier-Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamic coupling model is developed for a hybrid atomistic-continuum computation in micro- and nano-fluidics. In the hybrid atomistic-continuum computation, a molecular dynamics (MD) simulation is utilized in one region where the continuum assumption breaks down and the Navier-Stokes (NS) equations are used in another region where the continuum assumption holds. In the overlapping part of these two regions, a constrained particle dynamics is needed to couple the MD simulation and the NS equations. The currently existing coupling models for the constrained particle dynamics have a coupling parameter, which has to be empirically determined. In the present work, a novel dynamic coupling model is introduced where the coupling parameter can be calculated as the computation progresses rather than inputing a priori. The dynamic coupling model is based on the momentum constraint and exhibits a correct relaxation rate. The results from the hybrid simulation on the Couette flow and the Stokes flow are in good agreement with the data from the full MD simulation and the solutions of the NS equations, respectively. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bending behavior and damage characteristics of CALL (Carbon fiber/epoxy/AL Laminate) hybrid composites have been studied by moire interferometry. The shear strain distribution along the cross-section and the forms of damage of bending beams are obtained. The results show that the magnitude of the shear strain in a carbon/epoxy layer is obviously larger than that in a corresponding aluminum layer and the shear strain distribution of a CFRP layer along the cross-section conforms basically to a parabolic distribution curve, as for the shear strain distribution in aluminum layers along the cross-section. Shear damage, either in the interfaces or in carbon-fiber/epoxy laminae, and tensile failure of CFRP laminae in the tension surface represent, respectively, the damage forms of the longitudinal and transverse bending specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanowires functionalized by special molecules can be used to as the candidates for biological application in many areas. In this paper, nickel nanowires, which were fabricated by electrochemical deposition and functionalized by biotinylated peptide, were applied to constructing the hybrid device powered by F-1-ATPase motors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polar headgroup of dipalmitoylphosphatidylcholine (DPPC) molecule both in gas phase and aqueous Solution is investigated by the hybrid quantum mechanical/molecular mechanical (QM/MM) method, in which the polar head of DPPC molecule and the bound water molecules are treated with density functional theory (DFT), while the apolar hydrocarbon chain of DPPC molecule is treated with MM method. It is demonstrated that the hybrid QM/MM method is both accurate and efficient to describe the conformations of DPPC headgroup. Folded structures of headgroup are found in gas phase calculations. In this work, both monohydration and polyhydration phenomena are investigated. In monohydration, different water association sites are studied. Both the hydration energy and the quantum properties of DPPC and water molecules are calculated at the DFT level of theory after geometry optimization. The binding force of monohydration is estimated by using the scan method. In polyhydration, more extended conformations are found and hydration energies in different polyhydration styles are estimated. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments have found that slip length could be as large as on the order of 1 mu m for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Point-particle based direct numerical simulation (PPDNS) has been a productive research tool for studying both single-particle and particle-pair statistics of inertial particles suspended in a turbulent carrier flow. Here we focus on its use in addressing particle-pair statistics relevant to the quantification of turbulent collision rate of inertial particles. PPDNS is particularly useful as the interaction of particles with small-scale (dissipative) turbulent motion of the carrier flow is mostly relevant. Furthermore, since the particle size may be much smaller than the Kolmogorov length of the background fluid turbulence, a large number of particles are needed to accumulate meaningful pair statistics. Starting from the relative simple Lagrangian tracking of so-called ghost particles, PPDNS has significantly advanced our theoretical understanding of the kinematic formulation of the turbulent geometric collision kernel by providing essential data on dynamic collision kernel, radial relative velocity, and radial distribution function. A recent extension of PPDNS is a hybrid direct numerical simulation (HDNS) approach in which the effect of local hydrodynamic interactions of particles is considered, allowing quantitative assessment of the enhancement of collision efficiency by fluid turbulence. Limitations and open issues in PPDNS and HDNS are discussed. Finally, on-going studies of turbulent collision of inertial particles using large-eddy simulations and particle- resolved simulations are briefly discussed.