1 resultado para Homing pigeons.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the study of the geomagnetic orientation and navigation of homing pigeon and migrating bats. Magnetic minerals, possibly the base of the “magnetoreceptors”, which can perceive the magnetic information from geomagnetic field, are studied using advanced mineral magnetic methods in combination of non-magnetic techniques. In addition, the mechanism of magnetite biomineralization in organism has been probed through the formation of ferritin under laboratory-controlled conditions. A series of magnetic measurements of selected pigeon samples found the biogenic magnetite particles. a significant rapid decay of SIRM5K in the interval of 5–20 K on both zero-field cooled and field cooled warming curves suggests the dominance of superparamagnetic particles in the samples. Additionally, we noted that the content of magnetite particles in the male and the female are different. It is also found that bats contain magnetite. The results of room temperature magnetic measurements of Rhinolophus ferrumequinum and Chaerophon plicatus samples indicates there are magnetite in the heads of bats. The concentration of magnetic materials in the brain is higher than that in the skull. The results of low temperature magnetic measurements in Nyctalus plancyi samples show that the head may contain a small quantity of magnetite particles. In order to study the magnetite biomineralizaiton, ferritin was reconstituted. The results of electron nanodiffraction patterns indicate that the dominant mineral phases in the reconstituted ferritin are ferrihydrite, which is similar to that in the native ferritin. The blocking temperature (TB) is near 20K. A series of magnetic hysteresis at low temperatures (3-21K) show the wasp-waisted hysteresis loop. This can be interpreted by either grain size effects (SP + SD) or different coercivities minerals.