111 resultados para High strain

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the quantitative prediction of the volume fraction of martensitic transformation in a austenitic steel that undergoes impact with high strain rate. The coupling relations between strain, stress, strain rate, transformation rate and transformed fraction were derived from the OTC model and modified Bodner-Partom equations, where the impact process was considered as an adiabatic and no entropy-increased process (pressure less than or equal to 20GPa). The one-dimensional results were found to model and predict various experimental results obtained on 304 stainless steel under impact with high strain rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation has been made into the plastic deformation behavior of a Monel alloy deformed at high strain rate of 10(5) s(-1) by split Hopkinson bar. The results reveal that there are some equiaxed grains with an average size of 150 nm in diameter in the center of the shear bands, suggesting that this microstructure characteristics be developed by dynamic recrystallization, arising from the deformation and the rapid temperature rise in the band. Analysis shows that the plastic strain rate and the mobile dislocation density play a key role in the new crystallized grain formation and growth. Based on grain boundary energy change and diffusion mechanism, the grain growth kinetics is developed for plastic deformation at a high strain rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous experiments on nanocrystalline Ni were conducted under quasistatic strain rates (similar to 3x10(-3)/s), which are much lower than that used in typical molecular dynamics simulations (>3x10(7)/s), thus making direct comparison of modeling and experiments very difficult. In this study, the split Hopkinson bar tests revealed that nanocrystalline Ni prefers twinning to extended partials, especially under higher strain rates (10(3)/s). These observations contradict some reported molecular dynamics simulation results, where only extended partials, but no twins, were observed. The accuracy of the generalized planar fault energies is only partially responsible, but cannot fully account for such a difference. (C) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the effect of particle size on the formation of adiabatic shear band in 2024 All matrix composites reinforced with 15% volume fraction of 3.5, 10 and 20 mum SiC particles was investigated by making use of split Hopkinson pressure bar (SHPB). The results have demonstrated that the onset of adiabatic shear banding in the composites strongly depends on the particle size and adiabatic shear banding is more readily observed in the composite reinforced with small particles than that in the composite with large particles. This size dependency phenomenon can be characterized by the strain gradient effect. Instability analysis reveals that high strain gradient is a strong driving force for the formation of adiabatic shear banding in particle reinforced metal matrix composites (MMCp).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact response and failure mechanisms of ultrahigh modulus polyethylene (UHMPE) fiber composites and UHMPE fiber-carbon fiber hybrid composites have been investigated. Charpy impact, drop weight impact and high strain rate impact experiments have been performed in order to study the impact resistance, notch sensitivity, strain rate sensitivity and hybrid effects. Results obtained from dynamic and quasi-static measurements have been compared. Because of the ductility of UHMPE fibers, the impact energy absorption of UHMPE fiber composites is very high, thereby leading to excellent damage tolerance. By hybridizing with UHMPE fibers, the impact properties of carbon fiber composites can be greatly improved. The impact and shock failure mechanisms of these composites are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead magnesium niobate-lead titanate (PMN-PT) is an intriguing candidate for applications in many electronic devices such as multi-layer capacitors, electro-mechanical transducers etc. because of its high dielectric constant, low dielectric loss and high strain near the Curie temperature. As an extension of our previous work on Ta-doped PMNT-PT aimed at optimizing the performance and reducing the cost, this paper focuses on the effect of Pb volatilization on the dielectric properties of 0.77Pb(Mg1/3(Nb0.9Ta0.1)2/3)O3-0.23PbTiO3. The dielectric constant and loss of the samples are measured at different frequencies and different temperatures. The phase purity of this compound is determined by X-ray diffraction pattern. It is found that the volatilization during sintering does influence the phase formation and dielectric properties. The best condition is sintering with 0.5 g extra PbO around a 4 g PMNT-PT sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations made by the authors and collaborators into the microstructural aspects of adiabatic shear localization are critically reviewed. The materials analyzed are low-carbon steels, 304 stainless steel, monocrystalline Fe-Ni-Cr, Ti and its alloys, Al-Li alloys, Zircaloy, copper, and Al/SiCp composites. The principal findings are the following: (a) there is a strain-rate-dependent critical strain for the development of shear bands; (b) deformed bands and white-etching bands correspond to different stages of deformation; (c) different slip activities occur in different stages of band development; (d) grain refinement and amorphization occur in shear bands; (e) loss of stress-carrying capability is more closely associated with microdefects rather than with localization of strain; (f) both crystalline rotation and slip play important roles; and (g) band development and band structures are material dependent. Additionally, avenues for new research directions are suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deformation behavior and the effect of the loading rate on the plastic deformation features in (numbers indicate at.%) Ce60Al15Cu10Ni15, Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu20Nb2, and Ce70Al10Cu20 bulk metallic glasses (BMGs) were investigated through nanoindentation. The load-displacement (P-h) curves of Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu2, and Ce70Al10Cu20 BMGs exhibited a continuous plastic deformation at all studied loading rate. Whereas, the P-h curves of Ce60Al15Cu10Ni15 BMG showed a quite unique feature, i.e. homogeneous plastic deformation at low loading rates, and a distinct serrated flow at high strain rates. Moreover, a creep deformation during the load holding segment was observed for the four Ce-based BMGs at room temperature. The mechanism for the appearance of the "anomalous" plastic deformation behavior in the Ce-based BMGs was discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the composite with larger particles. To characterize this size-dependent deformation localization behavior of particle reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in MMCp. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plastic deformation of polycrystalline Cu with ultrathin lamella twins has been studied using molecular dynamics simulations. The results of uniaxial tensile deformation simulation show that the abundance of twin boundaries provides obstacles to dislocation motion, which in consequence leads to a high strain hardening rate in the nanotwinned Cu. We also show that the twin lamellar spacing plays a vital role in controlling the strengthening effects, i.e., the thinner the thickness of the twin lamella, the harder the material. Additionally, twin boundaries can act as dislocation nucleation sites as they gradually lose coherency at large strain. These results indicate that controlled introduction of nanosized twins into metals can be an effective way of improving strength without suppression tensile ductility. (C) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation has been made into the effect of microstructural parameters on the propensity for forming shear localization produced during high speed torsional testing by split Hopkinson bar with different average rates of 610, 650 and 1500 s(-1) in low carbon steels. These steels received the quenched, quenched and tempered as well as normalized treatments that provide wide microstructural parameters and mechanical properties. The results indicate that the occurrence of the shear localization is susceptible to the strength of the steels. In other words, the tendency of the quenched steel to form a shear band is higher than that of the other two steels. It is also found that there is a critical strain at which the shear localization occurs in the steels. The critical strain value is strongly dependent on the strength of the steels. Before arriving at this point, the material undergoes a slow work-hardening. After this point, the material suffers work-softening, corresponding to a process during which the deformation is gradually localized and eventually becomes spatially correlated to form a macroscopic shear band. Examinations by SEM reveal that the shear localization within the band involves a series of sequential crystallographic and non-crystallographic events including the change in crystal orientation, misorientation, generation and even perhaps damage in microstructures such as the initiation, growth and coalescence of the microcracks. It is expected that the sharp drop in the load-carrying capacity is associated with the growth and coalescence of the microcracks rather than the occurrence of the shear localization, but the shear localization is seen to accelerate the growth and coalescence of the microcracks. The thin foil observations by TEM reveal that the density of dislocations in the band is extremely high and the tangled arrangement and cell structure of dislocations tends to align along the shear direction. The multiplication and interaction of dislocations seems to be responsible for work-hardening of the steels. The avalanche of the dislocation cells corresponds to the sharp drop in shear stress at which the deformed specimen is broken. Double shear bands and kink bands are also observed in the present study. The principal band develops first and its width is narrower than that of the secondary band.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of tensile and compression tests on a short-glass-fiber-reinforced thermotropic liquid crystalline polymer are presented. The effect of strain rate on the compression stress-strain characteristics has been investigated over a wide range of strain rates epsilon between 10(-4) and 350 s-1. The low-strain-rate tests were conducted using a screw-driven universal tensile tester, while the high-strain-rate tests were carried out using the split Hopkinson pressure bar technique. The compression modulus was shown to vary with log10 (epsilon) in a bilinear manner. The compression modulus is insensitive to strain rate in the low-strain-rate regime (epsilon = 10(-4) - 10(-2) s-1), but it increases more rapidly with epsilon at higher epsilon. The compression strength changes linearly with log10 (epsilon) over the entire strain-rate range. The fracture surfaces were examined by scanning electron microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of inertial, thermal and rate - sensitive effects on the void growth at high strain rate in a thermal - viscoplastic solid is investigated by means of a theoretical model presented in the present paper. Numerical analysis of the model suggests that inertial, thermal and rate - sensitive effects are three major factors which greatly influence the behavior of void growth in the high strain rate case. Comparison of the mathematical model proposed in the present work and Johnson's model shows that if the temperature - dependence is considered, material viscosity eta can take the experimentally measured values.