3 resultados para Hemolysin
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Edwardsiella tarda is a pathogen with a broad host range that includes human and animals. The E. tarda hemolysin (Eth) system, which comprises EthA and EthB, is a noted virulence element that is widely distributed in pathogenic isolates of E. tarda. Previous study has shown that the expression of ethB is regulated by iron, which suggests the possibility that the ferric uptake regulator (Fur) is involved in the regulation of ethB. The work presented in this report supports the previous findings and demonstrates that ethB expression was decreased under conditions when the E. tarda Fur (Fur(Et)) was overproduced, and enhanced when Fur(Et) was inactivated. We also identified a second ethB regulator, EthR, which is a transcription regulator of the GntR family. EthR represses ethB expression by direct interaction with the ethB promoter region. In addition to ethB, EthR also modulates, but positively, luxS expression and AI-2 production by binding to the luxS promoter region. The expression of ethR itself is subject to negative autoregulation; interference with this regulation by overexpressing ethR during the process of infection caused (i) drastic changes in ethB and luxS expressions, (ii) vitiation in the tissue dissemination and survival ability of the bacterium, and (iii) significant attenuation of the overall bacterial virulence. These results not only provide new insights into the regulation mechanisms of the Eth hemolysin and LuxS/AI-2 quorum sensing systems but also highlight the importance of these systems in bacterial virulence.
Resumo:
构建产肠毒素B(staphylococcal enterotoxin B,SEB)的金黄色葡萄球菌α-溶血毒素(α-hemolysin,α-HL)缺失菌株。首先构建用于α-HL基因敲除的同源重组质粒pMHL-α,经金黄色葡萄球菌RN4220修饰后再通过原生质体转入金黄色葡萄球菌SM-01。含重组质粒pMHL-α的金黄色葡萄球菌SM-01在42℃诱导条件下培养多代,最终筛选出α-溶血毒素基因缺失菌株。经序列分析和血平板溶血实验结果证明最终获得产SEB金黄色葡萄球菌α-HL缺失菌株。为野生型金黄色葡萄球菌的体内遗传操作及构建产超抗原药物金黄色葡萄球菌基因工程菌株提供了一定的理论基础和方法。
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.