56 resultados para Helium and argon isotopes
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Helium, neon and argon isotope compositions of fluid inclusions have been measured in massive sulfide samples from the Jade hydrothermal field in the central Okinawa Trough. Fluid-inclusion He-3/He-4 ratios are between 6.2 and 10.1 times the air value (Ra), and with a mean of 7.8Ra, which are consistent with the mid-ocean ridge basalt values [He-3/He-4 approximate to (6Rasimilar to 11Ra)]. Values for Ne-20/Ne-22 are from 10.7 to 11.3, which are significantly higher than the atmospheric ratio (9.8). And the fluid-inclusion Ar-40/Ar-36 ratios range from 287 to 334, which are close to the atmosperic values (295.5). These results indicate that the noble gases of trapped hydrothermal fluids in massive sulfides are a mixture of mantle- and seawater-derived components, and the helium of fluid inclusions is mainly from mantle, the nelium and argon isotope compositions are mainly from seawater.
Resumo:
A modelling study is performed to compare the plasma °ow and heat transfer char- acteristics of low-power arc-heated thrusters (arcjets) for three di®erent propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equa- tions, which take into account the e®ects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, veloc- ity and Mach number distributions calculated within the thruster nozzle obtained with di®erent propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the °ow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appear- ing near the cathode tip; the °ow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant °ows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, speci¯c enthalpies and thermal conductivities, are di®erent, there are appreciable di®er- ences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest speci¯c impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.
Resumo:
T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.
Resumo:
A thermodynamic model of the evolution of microcracks in silicon caused by helium and hydrogen co-implantation during annealing was studied. The crack growth rate relies on the amount of helium atoms and hydrogen molecules present. Here, the crack radius was studied as a function of annealing time and temperature, and compared with experimental results. The mean crack radius was found to be proportional to the annealing temperature and the helium and hydrogen implanted fluence. The gas desorption should be considered during annealing process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A study of cooled Au-197 projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides Hf-183,Hf-184,Hf-186 and Ta-186,Ta-187. The results support the prediction of a strongly favored isomer region near neutron number 116.
Resumo:
Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.
Resumo:
The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller a ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40-24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.