13 resultados para Heated Water-filled Mattress
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-fitted single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-fitted SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.
Resumo:
运用乙炔抑制技术研究了不同施氮水平下秸秆还田对灌溉玉米田土壤反硝化反应和氧化亚氮(N2O)排放的影响。结果表明,土壤反硝化速率及N2O的排放受氮肥施用、秸秆处理方式及其交互作用的显著影响。与秸秆燃烧相比,不施氮或低施氮水平时,秸秆还田可刺激培养初期反硝化反应速率及N2O排放,增加培养期间N2O平均排放通量;高施氮水平时,秸秆还田可降低反硝化反应速率及反硝化过程中的N2O排放。秸秆还田可降低反硝化中N2O/N2的比例。
Resumo:
A ternary supramolecular complex of [Ni(bipy)(2)(H2O)](4)(C8AS)center dot 17.6(H2O) (bipy=4,4'-dimethyl-2,2'-bipyridine and C8AS = p-sulfonatocalix[8]arene) has been synthesized by a hydrothermal method and characterized by FT-IR spectroscopy, TG-DTA analysis and single crystal X-ray diffraction. In the structure. the water-soluble p-sulfonatocalix[8]arene molecule adopts a double partial cone conformation and is coordinated by four nickel atoms each of which is bonded by two 4,4'-dimethyl-2,2'-bipyridine molecules and one water molecule at the same time. The tetranuclear Subunits are stacked into an extended 3D structure with 1D water-filled channels via hydrogen bonds and C-H center dot center dot center dot pi interactions.
Resumo:
The compounds (het)(PtCl6)2H(2)O 1, (het)(HgI4).H2O 2 (het = 2-(alpha-hydroxyethyl)thiamine) and (hpt)(Hg2Br6) 3 (hpt = 2-(alpha-hydroxypropyl)thiamine) have been prepared and structurally characterized by X-ray crystallography in order to study the influence of the anion and molecular conformation on the formation of supramolecular architectures that adsorb anionic species. Both het and hpt molecules adopt the usual S conformation for C2-substituted thiamine but differ from the F conformation for C2-free thiamine derivatives. Two types of characteristic ligand-anion complexation are observed, being of the forms C(6')-H...anion...thiazolium-ring (in 1 and 2) and N(4'1)-H...anion...thiazolium-ring (in 3). The reaction of het with PtCl62- or HgI42- gives a 1-D double-chain in 1, consisting of two hydrogen-bonded het chains, which are cross-linked by anions through hydrogen bonding and anion...aromatic-ring interactions, or a cationic 3-D framework in 2 formed by the stacking of hydrogen-bonded sheets with anion-and-water-filled channels. In the case of 3, hydrogen-bonded hpt dimers and HgBr62- anions form alternate cation-anion columns. A comparison with the cases of C2-free thiamine-anion complexes indicates that the change in molecular conformation results in novel supramolecular assemblies in 1 and 2 and an analogous architecture in 3, which also depends on the nature of the anions.
Resumo:
Excrement patches of grazing animals play an important role in greenhouse gas (GHG) fluxes due to the high nitrogen (N) and available carbon (C) deposited in small areas, but little information is available for the effect of excrement in the Inner Mongolian grassland (43 26 degrees N, 116 degrees 40'E). To elucidate the effect of grazing sheep urine, fresh dung and compost on fluxes of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O), a short-term field study (65 days) was carried out in the typical grassland of Inner Mongolia with the optimised closed chamber/GC technique. Compared with the control, cumulative net CH4 consumption decreased 36, 31, and 18% from urine, fresh dung, and compost plots, respectively; net CO2-C output increased by 6.5, 1.5, and 1.2% from urine, fresh dung, and compost treated soil, respectively; about three times as much N2O-N was emitted from urine and the fresh dung treatments during 65 days. Nitrous oxide emission was positively correlated with CO, emission (R = 0.691, P < 0.01) and water-filled pore space (R = 0.698, P < 0.01). The percentages of N2O-N loss of applied-N were 0.44 and 1.05% for urine and fresh dung, respectively. Our results suggest that in autumn in the degraded grassland of Inner Mongolia, the effect of sheep excrement may be ignored when evaluating the total GHG emissions.
Resumo:
The influence of water on the brittle behavior of beta-cristobalite is studied by means of molecular dynamics (MD) simulation With the TTAM potential. Crack extension of mode 1 type is observed as the crack opening is filled LIP With water. The critical stress intensity factor K-lc(MD) is used to characterize the crack extension of MD simulation. The surface energy of SiO2 covered with layers of water is calculated at temperature of 300 K. Based oil the Griffith fracture criterion, the critical stress intensity factor K-lc(Griffith) is calculated, and it is in good agreement with that of MD simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Five new compounds of sulfonylcalix[4]arenetetrasulfonate (SC4AS), [H7Na(H2O)(3)(SC4AS)(phen)(5)](H2O)(11.9) (1), [H6Mn(H2O)(4)(SC4AS)(phen)(5)] (H2O)(12.7) (2), [Cu-4(SC4AS) (phen)(6)] (H2O)(4.5) (3), {[Cu (2)(SC4AS) (bpy)(2)][Cu(bpy)(2)(H2O)](2)} (H2O)(6.6) (4), and {[Zn-2(SC4AS) (phen)(2)][Zn(phen)(2)(H2O)(2)](2)} (H2O)(7) (5) (where phen 1,10-phenanthroline and bpy = 2,2'-bipyridine), were synthesized by a hydrothermal method and structurally determined by single crystal X-ray diffraction. The SC4AS ligand adopts partial cone conformation in compounds 1 and 2 and 1,2-alternate form in compounds 3-5. According to the structural analysis and density functional theory (DFT) calculations, we suggest that the metal can affect the conformation of SC4AS.
Resumo:
In this paper, we describe a simple procedure to make agar-gel microelectrodes by filling micropipettes. These microelectrodes were used to study K+ transfer across the agar-water \ 1,2-dichloroethane interface facilitated by dibenzo-18-crown-6 (DB18C6), and the transfer of tetraethylammonium (TEA(+)). The results observed were similar to those obtained at micro-liquid \ liquid interfaces. The effect of various amounts of agar in the aqueous phase was optimized and 3% agar was chosen based on the potential window and solidification time. The different shapes of micro-agar-gel electrodes were prepared in a similar way. The fabricated agar-gel microelectrodes obey the classical micro-disk steady-state current equation, which is different from the behavior of a normal micropipette filled with aqueous solution without silanization. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (K-oc) was developed based on correlations with k in soil/water systems. Strong log K-oc versus log k correlations (r>0.96) were found. The estimated K-oc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated K-oc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications. (C) 2002 Elsevier Science B.V. All rights reserved.