32 resultados para Heat pumps, load modelling, power quality, power system dynamics, power system simulation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文将随机系统状态模型辨识技术用于电力系统负荷预报。首先根据负荷的一系列历史数据建立负荷的状态空间模型,然后用滤波算法进行次日负荷预报,最后用电网实际数据在 PDP-11/23计算机上进行预报计算,得到比较满意的结果。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

高重复频率热容主振荡功率放大器(MOPA)激光系统的工作过程一般只持续几秒至几十秒,在此过程中系统输出光束的波前畸变是动态变化的。采用环路径向剪切干涉(CRWSI)技术对高重复频率热容MOPA系统波前畸变的变化过程进行检测,并对系统的总体结构进行了设计。搭建了一个简化的实验系统,采用平凹透镜来代替光放大器产生波前畸变,并由此对环路径向剪切干涉仪的测量精度进行了验证。结果表明,实验测量结果与理论计算值之间的峰值误差为7.8%(0.02λ)。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel miniature cylindrical combustor, whose chamber wall is made of porous material, has been designed and experimented for reducing heat loss and enhancing flame stability. The combustor has the function of reducing wall heat loss, extending residence time and avoiding radical chemical quenching with a self-thermal insulation concept in which heat loss reduction is obtained by the opposite flow directions between thermal energy transfer and mass flow. The methane/air mixture flames formed in the chamber are blue and tubular in shape. Between the flames and the porous wall, there is a thin unburned film that plays a significant role in reducing the flames' heat loss and keeping the flames stable. The porous wall temperature was 150-400 degrees C when the temperatures of the flames and exhaust gas were more than 1200 degrees C. When the equivalence ratio phi < 1.0, the methane conversion ratio was above 95%; the combustion efficiency was near 90%; and the overall sidewall heat loss was less than 15% in the 1.53 cm(3) chamber. Moreover, its combustion efficiency is stable in a wider combustion load (input power) range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ETL过程是一个从分布数据源(包括数据库、应用系统、文件系统等)抽取数据,进行转换、集成和传输,并最终加载到目标系统的过程。传统的ETL过程主要服务于数据仓库(Data Warehouse),属于企业决策支持系统的一部分。随着数据集成技术的发展和轻量级的数据集成中间件的出现,ETL过程广泛应用于企业数据集成与数据交换系统。在ETL过程中,数据质量控制是一个极为重要的基本组件和功能,它对集成中的数据进行检测、转换、清洗,以防止“脏”数据进入目标系统。在ETL过程中如果缺少对数据质量的有效控制,就会导致数据集成项目无法圆满实现目标或彻底失败。 针对ETL过程中存在的数据质量问题,设计并实现面向ETL过程的数据质量控制系统,是本文研究的重点。论文通过对ETL过程中各阶段可能产生的数据质量问题进行了分类,并对质量控制需求建模,提出一个面向ETL过程的数据质量控制框架,该框架通过对源端数据的分析来指导ETL的设计,通过灵活、可配置、可扩展的数据处理机制实现数据的过滤、转换与清洗,并支持对数据质量处理全过程进行监控。在该框架基础上,论文特别在灵活的数据处理机制、数据分析、数据过滤和数据清洗四个方面进行了探讨。在数据处理机制方面,提出了基于插件元模型的数据处理机制,该机制可以满足用户对数据过滤、数据转换与数据清洗等功能的各种定制需求,并具有较强的可扩展性;在数据分析方面,根据字段类型对数据进行分类统计,并针对大数据量统计分析问题,提出了可自动配置的不同数据统计策略;在数据过滤方面,通过将抽取数据的SQL语句重写的方式,过滤不满足完整性约束的元组;在数据清洗方法方面给出了一种利用统计信息动态确定属性相似度权重的方法,对基于字段的相似记录检测算法的领域无关算法进行了改进,提高了数据检测的准确性。在上述工作基础上,在数据集成中间件OnceDI中设计并实现了数据质量控制系统,并在设计中通过设计模式的应用增强系统的可扩展性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

中国计算机学会

Relevância:

100.00% 100.00%

Publicador:

Resumo:

中国计算机学会

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide three-dimensional numerical simulations of conjugate heat transfer in conventional and the newly proposed interrupted microchannel heat sinks. The new microchannel heat sink consists of a set of separated zones adjoining shortened parallel microchannels and transverse microchambers. Multi-channel effect, physical property variations, and axial thermal conduction are considered. It is found that flow rate variations in different channels can be neglected, while heat received by different channels accounts for 2% deviations from the averaged value when the heat flux at the back surface of the silicon chip reaches 100 W/cm(2). The computed hydraulic and thermal boundary layers are redeveloping in each separated zone due to shortened flow length for the interrupted microchannel heat sink. The periodic thermal developing flow is responsible for the significant heat transfer enhancement. Two effects influence pressure drops across the newly proposed microchannel heat sink. The first one is the pressure recovery effect in the microchamber, while the second one is the head loss when liquid leaves the microchamber and enters the next zone. The first effect compensates or suppresses the second one, leading to similar or decreased pressure drop than that for the conventional microchannel heat sink, with the fluid Prandtl number larger than unity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了一种新型的超高压输电线路巡检机器人,阐述了分阶段的控制策略.主要针对越障的工程实际问题,从理论上分析了越障阶段的难点:质心调节,输电线的辨识与定位问题.进行了仿真和试验,验证了控制策略和理论分析的正确性.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文以中国科学院知识创新工程重要方向项目“全自动激光拼焊成套装备关键技术研究与示范应用”及沈阳市科技攻关项目“激光视觉焊缝自动跟踪与质量检测系统”为依托,针对激光焊接这个难点问题,在广泛调研国内外研究现状的基础上,研究开发了一套激光视觉焊缝跟踪检测原理样机。本文主要包括以下四方面的工作:1焊缝跟踪系统的系统结构搭建;2图像处理方法研究;3图像处理方法在FPGA中的实现;4基于工业机器人的激光焊接实验 及结果分析。具体工作如下: 本文首先论述了应用于焊缝跟踪的线结构光视觉传感器检测原理,建立了激光焊缝跟踪检测系统实验平台。该平台由图像采集与处理模块、上位机系统、DSP控制器、伺服电机驱动器、伺服电机等五部分组成。 激光拼焊焊缝跟踪图像的处理方法是关键技术之一,直接影响系统的实时性,根据激光拼焊焊缝跟踪图像的特点设计了相应的图像处理算法,分析研究了基于数学形态学的焊缝跟踪结构光条纹图像增强算法,并根据本课题的特点提出了一种基于模板的边缘提取方法,能简洁快速地提取出单像素边缘,然后研究了结构光中心线提取算法以及焊缝特征点识别算法,最后通过仿真实验验证了该图像处理流程的有效性。 论文的重点在于图像处理方法在智能相机中的实时实现。跟踪系统对图像处理的实时性要求很高,传统的处理方法主要是在DSP中以软件编程的方式实现,速度难以进一步提高,本课题中通过在智能相机中的FPGA中构建一个SOPC系统,将基于硬件描述语言VHDL完成的图像预处理模块和基于Xilinx公司的microblaze软核的特征点提取模块集成在单片芯片上,实现了激光条纹特征点的实时提取,系统具有高度的灵活性与出色的功能。 最后对搭建的跟踪系统平台进行了实验研究,用实验验证了焊缝跟踪系统的性能,保证了该套系统能够满足实时跟踪的要求,可以达到预期的设计目标。