208 resultados para Heat pumps

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a hybrid device based on a microcantilever interfaced with bacteriorhodopsin (bR) is constructed. The microcantilever, on which the highly oriented bR film is self-assembled, undergoes controllable and reversible bending when the light-driven proton pump protein, bR, on the microcantilever surface is activated by visible light. Several control experiments are carried out to preclude the influence of heat and photothermal effects. It is shown that the nanomechanical motion is induced by the resulting gradient of protons, which are transported from the KCl solution on the cytoplasmic side of the bR film towards the extracellular side of the bR film. Along with a simple physical interpretation, the microfabricated cantilever interfaced with the organized molecular film of bR can simulate the natural machinery in converting solar energy to mechanical energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical cavitating flow in liquid jet pumps under operating limits is investigated in this paper. Measurements on the axial pressure distribution along the wall of jet pumps indicate that two-phase critical flow occurs in the throat pipe under operating limits. The entrained flow rate and the distribution of the wall pressure upstream lowest pressure section does not change when the outlet pressure is lower than a critical value. A liquid-vapor mixing shockwave is also observed under operating limits. The wave front moves back and forth in low frequency around the position of the lowest pressure. With the measured axial wall pressures, the Mach number of the two-phase cavitating flow is calculated. It's found that the maximum Mach number is very close to I under operating limits. Further analysis infers a cross-section where Mach number approaches to I near the wave front. Thus, the liquid-vapor mixture velocity should reach the local sound velocity and resulting in the occurrence of operating limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer coefficients for horizontally immersed tubes have been studied in model internally circulating fluidized bed (ICFB) and pilot ICFB incinerators. The characteristics in the ICFB were found to be significantly different from those in a bubbling bed. In ICFB, there is a flowing zone with high velocity, a heat exchange zone, and a moving zone with low velocity. The controllable heat transfer coefficients in ICFB strongly depend on the fluidized velocity in the flowing zone, and also the flow condition in the moving zone. The heat exchange process and suitable bed temperature can be well controlled according to this feature. Based on the results of experiments, a formulation for heat transfer coefficient has been developed. These results were applied to an external superheater of a CFB incinerator with a 450 degreesC steam outlet in a waste-to-energy pilot cogeneration plant of 12 MW in Jiaxing City, China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

发展了测定实验室土样热扩散率的方法,介绍了研制的实验装置和建议的操作程序。给出的实验结果表明土壤热扩散率随土壤空隙率、含水量和温度等许多参数而变化。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that the press formability and the elongation of laser textured sheet are improved, and the service life of textured roll is longer than that of the un-textured roll due to hardening of the treated surface. One of the goals to develop high repetitive rate YAG laser-induced discharge texturing (LIDT) is to get deeper hardening zone. By observing and measuring cross-section of LIDT spots in different discharge conditions, it is found that the single-crater, which is formed by the discharge conditions of anode, which is covered by an oil film and with rectangular current waveform, has the most depth of heat affected zone (HAZ) comparing with other crater shapes when discharge energy is the same. The depth of HAZ is mainly depends on pulse duration when the discharge spot is single-crater. The results are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape Memory Alloy (SMA) can be easily deformed to a new shape by applying a small external load at low temperature, and then recovers its original configuration upon heating. This unique shape memory phenomenon has inspired many novel designs. SMA based heat engine is one among them. SMA heat engine is an environment-friendly alternative to extract mechanical energy from low-grade energies, for instance, warm wastewater, geothermal energy, solar thermal energy, etc. The aim of this paper is to present an applicable theoretical model for simulation of SMA-based heat engines. First, a micro-mechanical constitutive model is derived for SMAs. The volume fractions of austenite and martensite variants are chosen as internal variables to describe the evolution of microstructure in SMA upon phase transition. Subsequently, the energy equation is derived based on the first thermodynamic law and the previous SMA model. From Fourier’s law of heat conduction and Newton’s law of cooling, both differential and integral forms of energy conversion equation are obtained.