102 resultados para Heat island

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

城市增温的原因包括全球变暖和城市热岛效应两个方面,二者对城市环境、社会经济和市民健康均有相当程度的影响。本文的研究目的是:(1)通过比较处于不同气候带上同样规模城市的气温变化趋势和速率差异,探讨地理位置对城市增温现象的影响;(2)通过分析近期人类活动和城市发展规模与城市增温现象的相关性,搞清楚城市化发展过程中显著影响热岛效应的因素。了解城市增温的地理分异规律及其受城市化发展的影响,对全面认识城市增温现象、积极寻求应对城市增温所造成的环境危害的策略具有重要的科学和实践意义。 本文按照经纬度在全国范围内选取6个特大城市:济南、西安、兰州、广州、上海和北京为研究对象,按城市所处地理位置分为代表水分梯度的同纬度经向分布城市,近海到内陆依次为济南、西安和兰州,以及代表温度梯度的纬向分布城市,低纬度到高纬度依次为广州、上海和北京,借助统计学方法,对各城市分别进行了年均气温比较分析,并对近期人类活动对不同城市增温效应的影响进行了分析。结果表明: 1.各城市气温均呈上升趋势,其中年均最低气温上升幅度最大,年均气温上升幅度次之,年均最高温度上升幅度最小;温度普遍升高的前提下高纬度地区温度升幅较大,内陆地区增温比近海地区大,即城市增温幅度与水分梯度和温度梯度呈负相关关系;不同城市在不同年代冷暖变化的强度和峰谷相位不尽一致,北京、西安和广州从上世纪50年代到70年代气温整体趋势变冷,其他城市缓慢升温,进入80年代后6个城市均进入加速增温阶段。 2.城市热岛效应对最低气温影响最明显,即城市最低气温与参照站差值增长趋势最为显著,其次为年均温,市区最高气温与参照站差值增长趋势最缓慢;自1978年改革开放以来,6个城市年均最低气温和年均温城乡差值均达到极显著水平,兰州最高,达0.69℃/lOa和0.49℃/lOa;从近海到内陆随着年降水量减少,3个城市(依次为济南、西安和兰州)热岛效应依次增加,从高纬度到底纬度随着温度升高(北京、上海和广州),城市热岛效应有减小趋势。 3.不同城市增温均表现出与人口(包括市辖区年末总人口、市辖区人口密度)、市辖区地区生产总值、年末实有道路面积、建成区面积和第二产业占GDP比重等代表城市发展因素的指标呈显著正相关,与绿地有关的因素,包括园林绿地面积和年末耕地面积呈显著负相关,而同样的因素对同一个城市不同气候参数的影响也不相同,最低气温对增温因子的敏感度高于其他气温参数,而对降低增温效应因子的敏感度小于其他气候参数,同样的因素对不同城市气候参数也有不同效应。 本项研究的结果证实了城市增温是一个比较复杂的过程,其中即反映了全球气候变化的大背景,也受到了影响水热环境的地理因素的制约,同时又与城市化发展的进程密切相关。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

伴随着全球经济一体化浪潮的来临,世界各地的经济飞速发展,同时城市化和工业化进程也在逐年加快。城市不断“摊大饼”式的蔓延扩张带来城市土地利用格局剧烈变化,同时人为热排放增加,绿地减少,这些使得城市热岛现象变得越来越严重。城市热岛效应严重影响了城市内部的各种生态过程,破坏了城市生态系统的平衡。因此,如何缓解热岛效应成为各专业科学工作者的研究热点。当前,越来越多的研究着眼于对城市热场的分布特征、热岛效应的空间布局和影响因子等,这些研究为建筑设计、城市规划建设和环境管理等提供了科学依据。 本文在综述城市热岛效应研究的基础上,针对目前研究中存在的问题,综合利用移动样带法、定点观测法和遥感定量分析法,在局部地区和城市尺度分别对北京市的热岛效应进行观测、评价,分析了城市热岛强度与土地利用因子、工业格局之间的关系,最后提出缓解城市热岛效应的对策,并重点描述了“冷桥系统”的构建。观测结果表明: 1、北京市中轴线上的热场呈“M”型分布,即二环内部温度相对较低,三环至五环温度升高,而后又下降。这主要是由于二环内传感器接受的辐射强度小、人为热排放少、植被绿化完善和建筑、道路尺度较小所造成的。二环内部存在低温区,证明二环以内仍然具备良好的人居环境。 2、城市各种土地利用类型中,林地的降温效果最显著,而不透水地面(不包括建筑)的增温效果最显著,且它们对热环境的影响范围都在1 km以内。鉴于林地和不透水地面(不包括建筑)的这个特性,在规划城市冷桥系统时可以以1 km为基本单元,以有效缓解城市热岛效应。 3、利用遥感手段对城市热岛效应的研究发现,城市工业布局和城市化发展趋势与热岛效应的空间分布具有高度的一致性,且工业区的热岛强度极显著高于建成区。统计结果表明,北京市五环内的亮度温度的热岛强度为3.81 K,其中二环内的热岛强度为4.03 K,三环内的热岛强度为3.90 K,四环内的热岛强度为3.88 K。 最后,文章提出了缓解城市热岛效应的对策。除了传统的增加绿地,减少热排放和大气污染等方法以外,本文着重从调整城市格局的角度提出了城市冷桥系统的概念与构建方法,并以北京市做案例分析。构建冷桥系统可以促进城乡间的气体交换,有效完善城市的景观安全格局,保证城市的生态安全,从而最终达到改善城市人居环境,保障居民身心健康的目的。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processing of a recently acquired seismic line in the northeastern South China Sea by Project 973 has been conducted to study the character and the distribution of gas hydrate Bottom-Simulating Reflectors (BSRs) in the Hengchun ridge. Analysis of different-type seismic profiles shows that the distribution of BSRs can be revealed to some extents by single-channel profile in this area, but seismic data processing plays an important role to resolve the full distribution of BSRs in this area. BSR' s in the northeastern South China Sea have the typical characteristics of BSRs on worldwide continental margins: they cross sediment bed reflections, they are generally parallel to the seafloor and the associated reflections have strong amplitude and a negative polarity. The characteristics of BSRs in this area are obvious and the BSRs indicate the occurrence of gas hydrate-bearing sediments in the northeastern South China Sea. The depth of the base of the gas-hydrate stability zone was calculated using the phase stability boundary curve of methane hydrate and gas hydrate with mixture gas composition and compared with the observed BSR depth. If a single gradient geothermal curve is used for the calculation, the base of the stability zone for methane hydrate or gas hydrate with a gas mixture composition does not correspond to the depth of the BSRs observed along the whole seismic profile. The geothermal gradient therefore changes significantly along the profile. The geothermal gradient and heat flow were estimated from the BSR data and the calculations show that the geothermal gradient and heat flow decrease from west to east, with the increase of the distance from the trench and the decrease of the distance to the island arc. The calculated 2 heat flow changes from 28 to 64 mW/m(2), which is basically consistent with the measured heat flow in southwestern offshore Taiwan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a theoretical model proposed in Part I (Zhu et al., 2001a) is used to simulate the behavior of a twin crank NiTi SMA spring based heat engine, which has been experimentally studied by Iwanaga et al. (1988). The simulation results are compared favorably with the measurements. It is found that (1) output torque and heat efficiency decrease as rotation speed increase; (2) both output torque and output power increase with the increase of hot water temperature; (3) at high rotation speed, higher water temperature improves the heat efficiency. On the contrary, at low rotation speed, lower water temperature is more efficient; (4) the effects of initial spring length may not be monotonic as reported. According to the simulation, output torque, output power and heat efficiency increase with the decrease of spring length only in the low rotation speed case. At high rotation speed, the result might be on the contrary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ni-B coating was prepared with EN using potassium borohydride reducing agent. The as-plated micro-structure of the coating was confirmed from XRD to be a mixture of amorphous and supersaturated solid solution. Three kinds of phase transformation were observed from the DSC curve. Different from the previous works, the formation of Ni4B3 and Ni2B was found during some transformation processes. The key factors which influence the variation of micro-hardness and micro-structure in deposits are the formation, the size and amount of Ni3B, Ni4B3 and Ni2B. Aging of the deposits treated under some heat treatment conditions occurred at room temperature. Changes of the micro-hardness indicated aging phenomena evidently. the natural aging phenomena are concerned with various kinds of decomposition of borides, especially with Ni4B3 phase. The extent of natural aging depends on the formation and the quantity of Ni(4)B3 and Ni2B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer coefficients for horizontally immersed tubes have been studied in model internally circulating fluidized bed (ICFB) and pilot ICFB incinerators. The characteristics in the ICFB were found to be significantly different from those in a bubbling bed. In ICFB, there is a flowing zone with high velocity, a heat exchange zone, and a moving zone with low velocity. The controllable heat transfer coefficients in ICFB strongly depend on the fluidized velocity in the flowing zone, and also the flow condition in the moving zone. The heat exchange process and suitable bed temperature can be well controlled according to this feature. Based on the results of experiments, a formulation for heat transfer coefficient has been developed. These results were applied to an external superheater of a CFB incinerator with a 450 degreesC steam outlet in a waste-to-energy pilot cogeneration plant of 12 MW in Jiaxing City, China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

发展了测定实验室土样热扩散率的方法,介绍了研制的实验装置和建议的操作程序。给出的实验结果表明土壤热扩散率随土壤空隙率、含水量和温度等许多参数而变化。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional model has been developed based on the experimental results of stainless steel remelting with the laminar plasma technology to investigate the transient thermo-physical characteristics of the melt pool liquids. The influence of the temperature field, temperature gradient, solidification rate and cooling rate on the processing conditions has been investigated numerically. Not only have the appropriate processing conditions been determined according to the calculations, but also they have been predicted with a criterion established based on the concept of equivalent temperature area density (ETAD) that is actually a function of the processing parameters and material properties. The comparison between the resulting conditions shows that the ETAD method can better predict the optimum condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat how direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that the press formability and the elongation of laser textured sheet are improved, and the service life of textured roll is longer than that of the un-textured roll due to hardening of the treated surface. One of the goals to develop high repetitive rate YAG laser-induced discharge texturing (LIDT) is to get deeper hardening zone. By observing and measuring cross-section of LIDT spots in different discharge conditions, it is found that the single-crater, which is formed by the discharge conditions of anode, which is covered by an oil film and with rectangular current waveform, has the most depth of heat affected zone (HAZ) comparing with other crater shapes when discharge energy is the same. The depth of HAZ is mainly depends on pulse duration when the discharge spot is single-crater. The results are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.