118 resultados para Harmonic frequency
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Under alternating current electric field, effective response of granular nonlinear composites with spherical coated inclusions is investigated in the dilute limit by using the perturbation approach. For an external sinusoidal applied field with finite frequency omega, the local fields and potentials of composites in general consist of components at all harmonics for cubic nonlinear constitutive relationships. We derive the local potentials of spherical coated composites at harmonics. Moreover, we give the formulae of the nonlinear effective AC susceptibility at the third harmonic frequency.
Resumo:
Frequency resolved optical gating (FROG), is an effective technique for characterizing the ultrafast laser pulses. The multi-shot second harmonic generation (SHG) FROG is the most sensitive one in different FROGs. In this paper we use this technique to measure the femtosecond optical pulses generated by a conventional Ti:sapphire oscillator.
Resumo:
We develop a swept frequency method for measuring the frequency response of photodetectors; (PDs) based on harmonic analysis. In this technique, a lightwave from a laser source is modulated by a radio-frequency (RF) signal via a Mach-Zehnder LiNbO3 modulator, and detected by a PD under test. The measured second-order harmonic of the RF signal contains information of the frequency responses and nonlinearities of the RF source, modulator, and PD. The frequency response of the PD alone is obtained by deducting the known frequency responses and nonlinearities of the RF source and modulator. Compared with the conventional swept frequency method, the measurement frequency range can be doubled using the proposed method. Experiment results show a good agreement between the measured results and those obtained using other techniques.
Resumo:
Harmonic millimeter wave (mm-wave) generation and frequency up-conversion are experimentally demonstrated using optical injection locking and Brillouin selective sideband amplification (BSSA) induced by stimulated Brillouin scattering in a 10-km single-mode fiber. By using this method, we successfully generate third-harmonic mm-wave at 27 GHz (f(LO) - 9 GHz) with single sideband (SSB) modulation and up-convert the 2GHz intermediate frequency signal into the mm-wave band with single mode modulation of the SSB modes. In addition, the mm-wave carrier obtains more than 23 dB power gain due to the BSSA. The transmission experiments show that the generated mm-wave and up-converted signals indicate strong immunity against the chromatic dispersion of the fibers.
Resumo:
The g-jitter influence on thermocapillary convection and critical Marangoni number in a liquid bridge of half-floating rone was discussed in the low frequency range of 0.4 to 1.5 Hz in a previous paper. This paper extended the experiments to the intermediate frequency range of 2 to 18 Hz, which htrs often been recorded as vibration environment of spacecrafts. The experiment was completed on the deck of a vibration machine, which gave a periodical applied acceleration to simulate the effects of g-jitter. The experimental results in the intermediate frequency range are different from that in the low frequency range. The velocity field and the shape of the free surface have periodical fluctuations in response to g-jitter. The amplitude of the periodical varying part of the temperature response decreases obviously with increasing frequency of g-jitter and vanishes almost when the frequency of g-jitter is high enough. The critical Marangoni number is defined to describe the transition from a periodical convection in response to g-jitter to an oscillatory convection due to internal instability, and will increase with increasing g-jitter frequency. According to the spectral analysis, it can be found that the oscillatory part of temperature is a superposition of two harmonic waves if the Marangoni number is larger than a critical value.
Resumo:
We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.
Resumo:
An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on the ripple transfers of electric-field amplitude and phase in frequency tripling, simple formulas are derived for the harmonic laser's beam-quality factor M-3omega(2), with an arbitrary fundamental incidence to ideal nonlinear crystals. Whereas the harmonic beam's quality is generally degraded, the beam's divergence is similar to that of the fundamental after nonlinear frequency conversion. For practical crystals with periodic surface ripples that are caused by their machining, a multiorder diffractive model is presented with which the focusing properties of harmonic beams can be studied. Predictions of the theories are shown to be in excellent agreement with full numerical simulations. (C) 2002 Optical Society of America.
Resumo:
An electrical-to-green efficiency of more than 10% was demonstrated by intracavity-frequency-doubling a Q-switched diode-side-pumped Nd:YAG laser with a type II lithium triborate (LBO) crystal in a straight plano-concave cavity. An average power of 69.2 W at 532 nm was generated when electrical input power was 666 W. The corresponding electrical-to-green conversion efficiency is 10.4%. To the best of our knowledge, this is the highest electrical-to-green efficiency of second harmonic generation laser systems with side-pumped laser modules, ever reported. At about 66 W of green output power, the power fluctuation over 4 hours was better than +/-0.86%.
Resumo:
A novel ameliorated phase generated carrier (PGC) demodulation algorithm based on arctangent function and differential-self-multiplying (DSM) is proposed in this paper. The harmonic distortion due to nonlinearity and the stability with light intensity disturbance (LID) are investigated both theoretically and experimentally. The nonlinearity of the PGC demodulation algorithm has been analyzed and an analytical expression of the total-harmonic-distortion (THD) has been derived. Experimental results have confirmed the low harmonic distortion of the ameliorated PGC algorithm as expected by the theoretical analysis. Compared with the traditional PGC-arctan and PGC-DCM algorithm, the ameliorated PGC algorithm has a much lower THD as well as a better signal-to-noise-and-distortion (SINAD). A THD of below 0.1% and a SINAD of 60 dB have been achieved with PGC modulation depth (value) ranges from 1.5 to 3.5 rad. The stability performance with LID has also been studied. The ameliorated PGC algorithm has a much higher stability than the PGC-DCM algorithm. It can keep stable operations with LID depth as large as 26.5 dB and LID frequency as high as 1 kHz. The system employing the ameliorated PGC demodulation algorithm has a minimum detectable phase shift of 5 mu rad/root Hz @ 1 kHz, a large dynamic range of 120 dB @ 100 Hz, and a high linearity of better than 99.99%.
Resumo:
We present an efficient method to generate a ultrashort attosecond (as) pulse when a model He+ ion is exposed to the combination of an intense few-cycle chirped laser pulse and its 27th harmonics. By solving the time-dependent Schroumldinger equation, we found that high-order harmonic generation (HHG) from He+ ion is enhanced by seven orders of magnitude due to the presence of the harmonic pulse. After optimizing the chirp of the fundamental pulse, we show that the cut-off energy of the generated harmonics is extended effectively to I-p+25.5U(p). As a result, an isolated 26-as pulse with a bandwidth of 170.5 eV can be obtained directly from the supercontinuum around the cut-off of HHG. To better understand the physical origin of HHG enhancement and attosecond pulse emission, we perform semiclassical simulations and analyze the time-frequency characteristics of attosecond pulse.
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.