15 resultados para HAMILTONIAN-FORMULATION

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A closed, trans-scale formulation of damage evolution based on the statistical microdamage mechanics is summarized in this paper. The dynamic function of damage bridges the mesoscopic and macroscopic evolution of damage. The spallation in an aluminium plate is studied with this formulation. It is found that the damage evolution is governed by several dimensionless parameters, i.e., imposed Deborah numbers De* and De, Mach number M and damage number S. In particular, the most critical mode of the macroscopic damage evolution, i.e., the damage localization, is deter-mined by Deborah number De+. Deborah number De* reflects the coupling and competition between the macroscopic loading and the microdamage growth. Therefore, our results reveal the multi-scale nature of spallation. In fact, the damage localization results from the nonlinearity of the microdamage growth. In addition, the dependence of the damage rate on imposed Deborah numbers De* and De, Mach number M and damage number S is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An elastoplastic constitutive relation is developed for meso damage of whisker-reinforced composites. A model is constructed that includes orientation distribution of whiskers and slip systems as well as interface and crystal sliding. Evolution of damage will be addressed. Given in Part I is the formulation while examples will be illustrated in Part II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first-passage failure of quasi-integrable Hamiltonian si-stems (multidegree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is investigated. The motion equations of such a system are first reduced to a set of averaged Ito stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, a backward Kolmogorov equation governing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional moments of first-passage time are established. Finally, the conditional reliability function, and the conditional probability density and moments of first-passage time are obtained by solving these equations with suitable initial and boundary conditions. Two examples are given to illustrate the proposed procedure and the results from digital simulation are obtained to verify the effectiveness of the procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new statistical formulation and a relevant experimental approach to determine the growth rate of microcracks were proposed. The method consists of experimental measurements and a statistical analysis' on the basis of the conservation law of number density of microcracks in phase space. As a practical example of the method, the growth rate of microcracks appearing in an aluminium alloy subjected to planar impact loading was determined to be ca. 10 mu m/mu s under a tensile stress of 1470 MPa and load duration between 0.26 mu s and 0.80 mu s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and accurate finite volume method has been presented to solve the shallow water equations on unstructured grid in plane geometry. In addition to the volume integrated average (VIA moment) for each mesh cell, the point values (PV moment) defined on cell boundary are also treated as the model variables. The volume integrated average is updated via a finite volume formulation, and thus is numerically conserved, while the point value is computed by a point-wise Riemann solver. The cell-wise local interpolation reconstruction is built based on both the VIA and the PV moments, which results in a scheme of almost third order accuracy. Efforts have also been made to formulate the source term of the bottom topography in a way to balance the numerical flux function to satisfy the so-called C-property. The proposed numerical model is validated by numerical tests in comparison with other methods reported in the literature. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.