6 resultados para H-d equations
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
A two-dimensional (2-D) vortex-induced vibration (VIV) prediction model for high aspect ratio (LID) riser subjected to uniform and sheared flow is studied in this paper. The nonlinear structure equations are considered. The near wake dynamics describing the fluctuating nature of vortex shedding is modeled using classical van der Pol equation. A new approach was applied to calibrate the empirical parameters in the wake oscillator model. Compared the predicted results with the experimental data and computational fluid dynamic (CFD) results. Good agreements are observed. It can be concluded that the present model can be used as simple computational tool in predicting some aspects of VIV of long flexible structures. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.
Resumo:
Formulation of a 16-term error model, based on the four-port ABCD-matrix and voltage and current variables, is outlined. Matrices A, B, C, and D are each 2 x 2 submatrices of the complete 4 x 4 error matrix. The corresponding equations are linear in terms of the error parameters, which simplifies the calibration process. The parallelism with the network analyzer calibration procedures and the requirement of five two-port calibration measurements are stressed. Principles for robust choice of equations are presented. While the formulation is suitable for any network analyzer measurement, it is expected to be a useful alternative for the nonlinear y-parameter approach used in intrinsic semiconductor electrical and noise parameter measurements and parasitics' deembedding.
Resumo:
Recursive specifications of domains plays a crucial role in denotational semantics as developed by Scott and Strachey and their followers. The purpose of the present paper is to set up a categorical framework in which the known techniques for solving these equations find a natural place. The idea is to follow the well-known analogy between partial orders and categories, generalizing from least fixed-points of continuous functions over cpos to initial ones of continuous functors over $\omega $-categories. To apply these general ideas we introduce Wand's ${\bf O}$-categories where the morphism-sets have a partial order structure and which include almost all the categories occurring in semantics. The idea is to find solutions in a derived category of embeddings and we give order-theoretic conditions which are easy to verify and which imply the needed categorical ones. The main tool is a very general form of the limit-colimit coincidence remarked by Scott. In the concluding section we outline how compatibility considerations are to be included in the framework. A future paper will show how Scott's universal domain method can be included too.
Impact of spatial resolution and spatial difference accuracy on the performance of Arakawa A-D grids
Resumo:
This paper alms at illustrating the impact of spatial difference scheme and spatial resolution on the performance of Arakawa A-D grids in physical space. Linear shallow water equations are discretized and forecasted on Arakawa A-D grids for 120-minute using the ordinary second-order (M and fourth-order (C4) finite difference schemes with the grid spacing being 100 km, 10 km and I km, respectively. Then the forecasted results are compared with the exact solution, the result indicates that when the grid spacing is I kin, the inertial gravity wave can be simulated on any grid with the same results from C2 scheme or C4 scheme, namely the impact of variable configuration is neglectable; while the inertial gravity wave is simulated with lengthened grid spacing, the effects of different variable configurations are different. However, whether for C2 scheme or for C4 scheme, the RMS is minimal (maximal) on C (D) grid. At the same time it is also shown that when the difference accuracy increases from C2 scheme to C4 scheme, the resulted forecasts do not uniformly decrease, which is validated by the change of the group A velocity relative error from C2 scheme to C4 scheme. Therefore, the impact of the grid spacing is more important than that of the difference accuracy on the performance of Arakawa A-D grid.