13 resultados para Gulf Countries
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.
Resumo:
The aim of this paper is to investigate the mechanism of small scale sand-wave migration. According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand wave migration. The calculation results are shown to be consistent with the observed data in the trough of sand ridge. Considering the effect of environmental actions and sand wave features, we develop an effective formula to predict sand-wave migration. It is indicated that the physical models should be used to predict the migration of the small scale sand-wave, which is rarely dominated by wave activity.
Resumo:
The need for building human and institutional capacity has been identified in Agenda 21 of the UNCED conference as well as by a number of international environmental institutions as essential for integrated coastal management (ICM) and sustainable development in developing coastal states. There is a growing need for coastal management practitioners and organizations with expertise in planning and implementation for ICM. The application of strategies for institutional development and building human capacity in coastal management and other fields shows that short-term intensive training efforts and long-term institutional strengthening programs are appropriate to address the issues and needs of ICM. An overview of the experience of the URI/USAID International Coastal Resources Management Program in Sri Lanka, Thailand and Ecuador presents lessons learned for strengthening ICM efforts in developing countries.
Resumo:
Iron in seawater is an essential trace metal for phytoplankton that plays an important role in the marine carbon cycle. But most studies focused on oceanic iron fertilization in high nutrient low chlorophyll (HNLC) seawaters. A study of inorganic carbon (IC) forms and its influencing factors was presented in Liaodong Gulf sediments, and especially the influence of iron was discussed in detail. Inorganic carbon in Liaodong Gulf sediments was divided into five forms: NaCl, NH3·H2O, NaOH, NH2OH·HCl and HCl. The concentration of NaCl and NaOH forms were similar and they only occupied the minority of total inorganic carbon (TIC). However, NH3·H2O, NH2OH·HCl and HCl forms were the principal forms of TIC and accounted for more than 80% of TIC. Especially, the percentage of NH3·H2O form was much higher than that in the Changjiang River Estuary and Jiaozhou Bay sediments. All forms of inorganic carbon were influenced by organic carbon,pore water, iron, pH, redox potential(Eh) and sulfur potential(Es) in sediments, moreover, the influences had different characteristics for different IC forms. However, the redox reactions of iron affected mainly active IC forms. Iron had little effect on NH2OH·HCl and HCl forms of IC which were influenced mainly by pH. Iron had a stronger influence on NaCl, NaOH and NH3·H2O forms of IC; the influence of Fe2+ was higher than Fe3+ and its effect on NH3·H2O form was stronger than on NaCl and NaOH forms.
Resumo:
Geochemical processes in estuarine and coastal waters often occur on temporally and spatially small scales, resulting in variability of metal speciation and dissolved concentrations. Thus, surveys, which are aimed to improve our understanding of metal behaviour in such systems, benefit from high-resolution, interactive sampling campaigns. The present paper discusses a high-resolution approach to coastal monitoring, with the application of an automated voltammetric metal analyser for on-line measurements of dissolved trace metals in the Gulf of Cadiz, south-west Spain. This coastal sea receives metal-rich inputs from a metalliferous mining area, mainly via the Huelva estuary. On-line measurements of dissolved Cu, Zn, Ni and Co were carried out on-board ship during an eight-day sampling campaign in the study area in June 1997. A pumping system operated continuously underway and provided sampled water from a depth of ca. 4 m. Total dissolved metal concentrations measured on-line in the Gulf of Cadiz ranged between <5 nM Cu (<3 nM Ni) ca. 50 km off-shore and 60–90 nM Cu (5–13 nM Ni) in the vicinity of the Huelva estuary. The survey revealed steep gradients and strong tidal variability in the dissolved metal plume extending from the Huelva estuary into the Gulf of Cadiz. Further on-line measurements were carried out with the automatic metal monitor from the bank of the Odiel estuary over a full tidal cycle, at dissolved metal concentrations in the μM range. The application confirmed the suitability of the automated metal monitor for coastal sampling, and demonstrated its adaptability to a wide range of environmental conditions in the dynamic waters of estuaries and coastal seas. The near-real time acquisition of dissolved metal concentrations at high resolution enabled an interactive sampling campaign and therefore the close investigation of tidal variability in the development of the Huelva estuary metal plume.
Resumo:
The relation between otolith weight (OW) and the age of marine fish is studied. A total of 222 individuals of bighead white croaker, Pennahia macrocephalus were sampled seasonally in the mouth of the Beibu Gulf, the South China Sea, in 2007. Since there are no significant differences in sagittal OW between otolith in pairs (Pa parts per thousand yen0.05), the undamaged left sagittal otolith is used for age determination. The highest correlations among standard length, OW and fish ages are confirmed by linear, exponential and multinomial regression. Results show that sagittal OW overlaps only occasionally among age groups, and to individuals with similar standard length, the older and slower-growing fish has a heavier otolith because of the continued otolith material deposition. There are differences in sagittal OW among different age groups and significant positive linear relationship with age (P < 0.05). The age readings can be verified by plotting the sagittal OW versus the standard length for age groups, and the individuals with similar standard length but in different ages can be separated by sagittal OW frequency analysis. Mostly, the predicted ages using the regression between sagittal OW and ages are closed to the observed ages by counting annulus on scale. It indicates that the sagittal OW analysis is a useful technique for validating the accuracy of age determination by annuli counts, especially for individuals of similar size. Furthermore, the technique is applied for Pennahia macrocephalus with discussion in this paper.
Resumo:
According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand-waves migration in the seas of southwest of Hainan Island. Based on the submarine micro-geomorphic data induced by multi-beam system and hydrographic survey record, the migrations of the sand-waves in the study area are predicted. The results show that calculation is consistent with the observation data in the groove of sand ridge, but not well in the crest of sand ridge. It is indicated that the mechanics model should be used to predict the migration of the small scale sand-waves which are dominated by bed load in the seas. This paper is very meaningful to project the route of submarine pipeline.
Resumo:
The principal tidal constituents M-2, S-2, K-1 and O-1 in the South China Sea, Gulf of Tonkin and Gulf of Thailand are simulated simultaneously using the numerical scheme of Kwok et al. (1995 Proceedings of the 1st Asian Computational Fluid Dynamics Conference, pp. 16-19). The average differences between the computed and observed harmonic constants are mostly within 5 cm and 10 degrees for amplitudes and phase-lags, respectively. The simulated tidal regimes in the present model are believed to be more accurate than the previous numerical results. Our studies confirm that a clockwise rotating M-2 amphidromic system lies in the southeast of the Gulf of Thailand and an S-2 amphidromic system at the near-shore area of the northeast South China Sea. The linear tidal energy equation developed by Garrett (1975 Deep-Sea Research 22, 23-35) is generalized to the nonlinear case. Based on the numerical results, the energy budgets in the South China Sea and its subareas, namely the Taiwan Strait, the Gulf of Tonkin, the Gulf of Thailand and the remaining area are investigated. The tidal motion in the Taiwan Strait is maintained mainly by the energy fluxes from the East China Sea for both semidiurnal and diurnal species and partially from the Luzon Strait for semidiurnal species. For the other parts of the South China Sea, the tidal motion is mainly maintained by the energy fluxes through the Luzon Strait. The energy inputs from the tide-generating force are negative for semidiurnal species and positive for diurnal species. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Dissolved organic carbon (DOC), stable carbon isotopic (delta(13)C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. delta(13)C values of both POC (-23.8parts per thousand to -26.8parts per thousand) and DOC (-25.0parts per thousand to -29.0parts per thousand) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in delta(13)C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-delta(13)C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-delta(13)C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10-30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A new genus, Onkokepon n. gen., and two new species, O. articulatus n. sp. and O. beibuensis n. sp., infesting Leucosia longibranchia Shen & Chen and Leucosia unidentata de Haan, respectively, are described from Beibu Gulf in China and Vietnam. Neither of these species of Leucosia has previously been reported as bopyrid hosts. The new genus differs from other ionine bopyrid genera in the presence of a well-developed tubercular frontal lamina, a deeply digitate barbula, rudimentary subcircular pleopodal endopodites, and lacking coxal plates. O. articulatus n. sp. is distinguished from O. beibuensis n. sp. by having articulated maxillipedal palp, blunt posterolateral point of oostegite 1 and setose triangular frontal lamina of the female.