8 resultados para Gravesend, Richard de, Bishop of London, -1303.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Sequences of the mitochondrial cytochrome b (1140 bp) and nuclear IRBP (1152 bp) genes were used to assess the evolutionary history of Apodemus, using the complete set of Asian species. Our results indicate that speciation in Asia involved three radiations, which supports an earlier study. The initial radiation yielded A. argenteus (Japanese endemic), A. gurkha (Nepalese endemic), and the ancestral lineage of the remaining Asian species. This lineage subsequently diverged into four groups: agrarius-chevrieri (agrarius group), draco-latronum-semotus (draco group), A. peninsulae, and A. speciosus (Japanese endemic). The final step consisted of divergence within two species groups as a consequence of the geography of the Yunnan-Guizhou plateau and Taiwan. The ecological ability of two Apodemus-species to inhabit one locality via niche partitioning likely drove the second radiation and shaped the basic geographical pattern seen today: A. argenteus and A. speciosus in Japan, A. agrarius and A. peninsulae in northern China, and the A. agrarius and A. draco groups in southern China. The three radiations are estimated to have occurred 7.5, 6.6, and 1.8-0.8 Mya respectively, using the IRBP clock, based on rat-mouse divergence 12 Mya. (C) 2003 The Linnean Society of London.
Resumo:
Planar graphite has been extensively studied by Raman scattering for years. A comparative Raman study of several different and less common non-planar graphitic materials is given here. New kinds of graphite whiskers and tubular graphite cones (synthetic and natural) have been introduced. Raman spectroscopy has been applied to the characterization of natural graphite crystal edge planes, an individual graphite whisker graphite polyhedral crystals and tubular graphite cones. Almost all of the observed Raman modes were assigned according to the selection rules and the double-resonance Raman mechanism. The polarization properties related to the structural features, the line shape of the first-order dispersive mode and its combination modes, the frequency variation of some modes in different carbon materials and other unique Raman spectral features are discussed here in detail.
Resumo:
Metagentiana striata is an alpine annual herbaceous plant endemic to the east of the Qinghai-Tibet (Q-T) Plateau and adjacent areas. The phylogeography of M. striata was studied by sequencing the chloroplast DNA (cpDNA) trnS-trnG intergenic spacer. Ten haplotypes were identified from an investigation of 232 individuals of M. striata from 14 populations covering the entire geographical range of this species. The level of differentiation amongst populations was very high (G(ST) = 0.746; N-ST = 0.774) and a significant phylogeographical structure was observed (P < 0.05). An analysis of molecular variance found a high variation amongst populations (76%), with F-ST = 0.762 (highly significant, P < 0.001), indicating that little gene flow occurred amongst the different regions; this was explained by the isolation of populations by high mountains along the Q-T Plateau and adjacent areas (N-m = 0.156). Only one ancestral haplotype (A) was common and widespread throughout the distributional range of M. striata. The populations of the Hengduan Mountains region of the south-eastern Q-T Plateau showed high diversity and uniqueness of haplotypes. It is suggested that this region was the potential refugium of M. striata during the Quaternary glaciation, and that interglacial and postglacial range expansion occurred from this refugium. This scenario was in good agreement with the results of nested clade analysis, which inferred that the current spatial distribution of cpDNA haplotypes and populations resulted from range expansion, together with past allopatric fragmentation events. (c) 2008 The Linnean Society of London.
Resumo:
Homoploid hybrid plant species are rare, and the mechanisms of their speciation are largely unknown, especially for homoploid hybrid tree species. Two contrasting hypotheses have been proposed to explain the origin of Hippophae goniocarpa: (1) it is a diploid hybrid originating from H. rhamnoides ssp. sinensis x H. neurocarpa ssp. neurocarpa, and (2) it originated via marginal differentiation from H. rhamnoides ssp. sinensis. Regardless of which of these hypotheses is true (if either), previous studies have suggested that H. rhamnoides ssp. sinensis is the only maternal donor for this hybrid species. In this study, we aim to elucidate the maternal composition of H. goniocarpa and to test the two hypotheses. For this purpose, we sequenced the maternal chloroplast DNA trnL-F region of 75 individuals representing H. goniocarpa, H. rhamnoides ssp. sinensis, and H. neurocarpa ssp. neurocarpa in two co-occurring sites of the taxa. Seven haplotypes were identified from three taxonomic units, and their phylogenetic relationships were further constructed by means of maximum parsimony, maximum likelihood, and network analyses. These seven haplotypes clustered into two distinct, highly divergent lineages. Two haplotypes from one lineage were found in H. rhamnoides ssp. sinensis, and five (representing the other lineage) in H. neurocarpa ssp. neurocarpa. Hippophae goniocarpa shared four common haplotypes from both lineages, but the haplotypes detected from the two populations differed to some extent, and in each case were identical to local haplotypes of the putative parental species. Thus, both H. rhamnoides ssp. sinensis and H. neurocarpa ssp. neurocarpa appear to have together contributed to the maternal establishment of H. goniocarpa. These results clearly demonstrate that the marginal origin hypothesis should be rejected, and support the hybrid origin hypothesis. Hippophae goniocarpa exhibits a sympatric distribution with its two parent species, without occupying new niches or displaying complete ecological isolation. However, this species has effectively developed reproductive isolation from its sympatric parent species. Our preliminary results suggest that H. goniocarpa may provide a useful model system for studying diploid hybrid speciation in trees. (c) 2008 The Linnean Society of London.
Resumo:
The embryological features of three species of Swertia (s.l.) - S. erythrosticta, S. franchetiana, and S. tetraptera were characterized, and the observations were used, together with previously gathered data on other species, to evaluate a recently proposed polyphyly, based on molecular data, of Swertia s.l. Comparisons of species within the genus showed that they have diversified embryologically, and there are significant between-species differences. Notable features that vary between species include the number of cell layers that form the anther locule wall, the construction of the wall of the mature anther, tapetum origin, the cell number in mature pollen grains, the structure of the fused margins of the two carpels, the ovule numbers in placental cross-sections, the shape of the mature embryo sac, the degree of ovule curvature, antipodal variation and the presence of a hypostase, and seed appendages. They share characters that are widely distributed in the tribe Gentianeae, such as a dicotyledonous type of anther wall formation, a glandular tapetum with uninucleate cells, simultaneous cytokinesis following the meiosis of the microsporocytes, tetrahedral microspore tetrads, superior, bicarpellary and unilocular ovaries, unitegmic and tenuinucellar ovules, Polygonum-type megagametophytes, progamous fertilization, nuclear endosperm, and Solanad-type embryogeny. The presence of variation in embryological characters amongst the species of Swertia s.l. strongly supports the view that Swertia s.l. is not a monophyletic group. Frasera is better separated from Swertia s.l. as an independent genus, and is only distantly related to Swertia s. s. judging from the numerous differences in embryology. Swertia tetraptera is very closely related to Halenia, as they show identical embryology. (C) 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155, 383-400.
Resumo:
A new species of Saussurea, S. erecta S. W Liu, J. T Pan A J. Q. Liu sp. nov., is described from Tibet. It resembles S. kingii but may be distinguished by having distinct stems and glabrous achenes. Saussurea kingii was placed in sect. Pseudoeriocoryne of subgen. Eriocoryne; this section was circumscribed by acaulescence and an inflorescence with congested capitula surrounded by a rosette of leaves. The discovery of S. erecta with distinct stems, cauline leaves and corymbose capitula blurred the delimitation of sect. Pseudoeriocoryne and suggested that the section may be polyphyletic. Both the close relationship and the significant difference between S. erecta and S. kingii were confirmed by analyses of nrDNA ITS sequences. The resulting phylogenies based on ITS data further suggest that Saussurea sect. Pseudoeriocoryne, as traditionally defined, does not constitute a monophyletic group. The rapid radiation and speciation of Saussurea in the Qinghai-Tibetan Plateau, as inferred from ITS phylogeny, are discussed. (c) 2005 The Linnean Society of London.
Resumo:
Ligularia, a highly diversified genus in the eastern Qinghai-Tibet Plateau and adjacent areas, was chosen as a suitable subject in which to study speciation patterns in this 'hot spot' area at the chromosomal level. Chromosome numbers and karyotypes were studied in 23 populations of 14 species, most of which are endemic to this area. The basic number x = 29 was confirmed for all species. Ligularia virgaurea was found to have diploid and triploid cytotypes, 2n = 58 and 87. Other species are only diploid, with 2n = 58. The karyotypes of all populations within any species, and all species spanning most sections and covering most of the morphological range in Ligularia, are very similar to each other, belonging to type 2A according to Stebbin's classification. This karyotype was also found in its close allies, e.g. Cremanthodium, Ligulariopsis, Parasenecio, and Sinacalia. Aneuploid reduction of chromosome number from 2n = 60 to 58 and karyotypic variation was found in Ligularia and its allies. Such a chromosomal pattern with few polyploids infers that variation of karyotype structure at the diploid level seems to be the predominant feature of chromosomal evolution in this group and sympatric speciation via hybridization and polyploidization has played a minor role in its species diversity. (C) 2004 The Linnean Society of London