91 resultados para Graphene, Organic Electronics, Transparent Electrode

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The responses of a cryohydrogel tyrosinase enzyme electrode to four substrates in three pure water immiscible organic solvents were investigated. Kinetic parameters, the maximum kinetic current, I-max, the apparent Michaelis-Menten constant, K-m(app), and I-max/K-m(app), were calculated. The I-max/K-m(app) value was taken as an indicator of the catalytic efficiency of the sensor. The effect of the substrate hydrophobicity on I-max/K-m(app) and response time of the sensor were discussed. The effects of both hydrophobicity (log P) and dielectric constant (epsilon) of the organic solvent on the catalytic efficiency of the enzyme in the organic phase were studied. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mediatorless horseradish peroxidase (HRP) enzyme electrode operated in nonaqueous media is constructed by cryohydrogel immobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new material, polyhydroxyl cellulose, and a refrigerating immobilization method were used to construct HRP-mediator electrode for determination of hydrogen peroxide in water-free organic solvents. Rapid and sensitive response was obtained. The enzyme el

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexadecafluorophthalocyaninatocopper (F16CuPc)/zine phthalocyanine (ZnPc) heterojunction layer has been used as buffer layer in organic photovoltaic (OPV) cells based on ZnPc and C-60. The F16CuPc/ZnPc heterojunction with highly conductive property decreased the contact resistance between the indium-tin-oxide anode and the organic layer. As a result, the short-circuit current density and fill factor were increased, and the power-conversion efficiency was improved by over 60%. Therefore, the method provides an effective path to improve the performance of OPV cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we report the effects of the thickness of metal and oxide layers of the Al/WO3/Au interconnecting structure on the electrical and optical characteristics of the and bottom units of the two-unit stacked organic-light-emitting-devices (OLEDs). It is found that light emission performance of the upper unit is sensitive to the transmittance of semitransparent Al/WO3/Au structure, which can be improved by changing the thickness of each layer of the Al/WO3/Au structure. It is important to note that the introduction WO3 between Al and Au significantly enhances the current efficiency of both the upper and bottom units with respect to that of the corresponding Al/Au structure without WO3. In addition, the emission spectra of both the upper and bottom units are narrower than that of the control device due to microcavity effect. Our results indicate that the All WO3/Au interconnecting structure is a good candidate for fabricating independently controllable high efficiency stacked OLEDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of Er(PM)(3)(TP)(2) [PM = 1-Phenyl-3-methyl-4-isobutyryl-5-pyrazoloiie, TP = triphenyl phosphine oxide] was reported and its photoluminescence properties were studied by UV-vis absorption, excited, and emission spectra. The Judd-ofelt theory was introduced to calculate the radiative transition rate and the radiative decay time of 3.65 ms for the I-4(13/2) -> I-4(15/2) transition of Er3+ ion in this complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been experimentally found that molybdenum oxide (MoO3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO3 and MoO3 doped N,N '-di(naphthalene-1-yl)-N,N '-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to realize the common-emitter characteristics of the tris(8-hydroxyquinoline) aluminium (Alq(3))-based organic transistors, we used Au/Al double metal layer as the base, thus the vertical metal-base transistors with structure of Al/n-Si/Au/Al/Alq(3)/LiF/Al were constructed. It was found that the contact properties between the base and the organic semiconductors play an important role in the device performance. The utilization of Au/Al double layer metal base allows the devices to operate at high gain in the common-emitter and common-base mode at low operational voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tandem polymer photovoltaic cells with the subcells having different absorption characteristics in series connection are widely investigated to enhance absorption coverage over the solar spectrum. Herein. we demonstrate efficient tandem polymer photovoltaic cells with the two stacked subcells comprising different band-gap conjugated polymer and fullerene derivative bulk heterojunction in parallel connection. A semitransparent metal layer combined with inorganic semiconductor compounds is utilized as the intermediate electrode of the two stacked subcells to create the required built-in potential for collecting photo-generated charges. The short-circuit current of the stacked cell is the sum of the subcells and the open-circuit voltage is similar to the subcells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly efficient fluorescent white organic light-emitting diodes (WOLEDs) have been fabricated by using three red, green and blue, separately monochromatic emission layers. The red and blue emissive layers are based on 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) and p-bis(p-N,N-diphenyl-amino-styryl) benzene (DSA-ph) doped 2-methyl-9,10-di(2-naphthyl) anthracene (MADN), respectively; and the green emissive layer is based on tris(8-hydroxyquionline)aluminum(Alq(3)) doped with 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl- 1H,5H,1[H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-1]-one (C545T), which is sandwiched between the red and the blue emissive layers. It can be seen that the devices show stable white emission with Commission International de L'Eclairage coordinates of (0.41, 0.41) and color rendering index (CRI) of 84 in a wide range of bias voltages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.