19 resultados para Glucose in blood
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A novel fish chemokine receptor gene, chemokine (C-X-C motif) receptor 3 (CXCR3)-like was isolated from the grass carp Ctenopharyngodon idella , with its full-length genomic sequence. The cDNA of grass carp CXCR3-like (gcCXCR3-like) consists of 1261 bp with a 49bp 5'-UTR and a 189 bp 3'-UTR. An open reading frame of 1023 bp encodes a 341-amino acid peptide, with seven transmembrane helices. The deduced amino acid sequence showed the same sequence identities (37.8%) with its counterparts in goat and human. The gcCXCR3-like gene consists of two exons, with one intervening intron, spaced over approximately 2 kb of genomic sequence. Phylogenetic analyses clearly demonstrated that the gcCXCR3-like resembles the CXCR3s of other vertebrates. Real-time PCR analysis showed that gcCXCR3-like was expressed in all tested organs except heart and the expression level of gcCXCR3-like was highest in brain. Flow cytometric analyses showed the positive rate of labelled leukocytes from the healthy grass carp was 17.3%, and the labelled leukocytes were divided into three types by cell sorting. Immunohistochemical localization revealed that gcCXCR3-like expressed in whole brain regions including cerebel, diencephalon, medulla oblongata, optic lobe, and rhinencephalon, and that the labelled leukocytes are actually populations of monocyte and/or phagocyte, lymphocyte and the granulocyte. It is considered that fish CXCR expression and their function may need to be investigated in both nervous and immune systems. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have demonstrated a fully covalent, signal-on E-DNA architecture based on the target-induced resolution of a DNA pseudokont. In the absence of target, the electrode-bound DNA probe adopts a pseudoknot conformation that segregates an attached methylene blue (MB) from the electrode. Upon target binding, the pseudoknot is resolved, leading to the formation of a single-stranded DNA element that supports electron transfer from the methylene blue to the electrode.
Resumo:
We developed an electrochemical detector on a hybrid chip for the determination of glucose in human plasma. The microchip system described in this paper consists of a poly(dimethylsiloxane) (PDMS) layer containing separation and injection channels and an electrode plate. The copper microelectrode is fabricated by selective electroless deposition. The fabrication of the decoupler is performed by platinum electrochemical deposition on the metal film formed by electroless deposition. Factors influencing the performance, including detection potential, separation field strength, and buffer concentration, were studied. The electrodes exhibited good stability and durability in the analytical procedures. Under optimized detection conditions, glucose responded linearly from 10 muM to 1 mM. Finally, glucose in human plasma from three healthy individuals and two diabetics was successfully determined, giving a good prospect for a new clinical diagnostic instrument.
Resumo:
During the parasite fauna investigation within 2004 and 2005, the freshwater fish trypanosomes were isolated from the blood of dark sleeper (Odontobutis obscura Temminck and Schlegel) and snakehead fish (Ophiocephalus argus Cantor) from Niushan Lake, Hubei Province, China. Blood trypomastigotes were used for light microscopy investigations. The detailed descriptions of three morphological groups of the genus Trypanosoma: Trypanosoma sp. I and Trypanosoma sp. II found in blood of O. obscura, and Trypanosoma sp. III found in blood of O. argus were provided. Morphological features and host species show Trypanosoma sp. III belong to Trypanosoma ophiocephali Chen 1964, an incompletely described species. Infection with trypanosomes of O. obscura was recorded for the first time. According to the size and appearance, the trypanosomes in O. obscura were also tentatively identified as T. ophiocephali Chen 1964.
Resumo:
Cell adhesion, mediated by specific receptor-ligand interactions, plays an important role in biological processes such as tumor metastasis and inflammatory cascade. For example, interactions between beta(2)-integrin ( lymphocyte function-associated antigen-1 and/or Mac-1) on polymorphonuclear neutrophils (PMNs) and ICAM-1 on melanoma cells initiate the bindings of melanoma cells to PMNs within the tumor microenvironment in blood flow, which in turn activate PMN-melanoma cell aggregation in a near-wall region of the vascular endothelium, therefore enhancing subsequent extravasation of melanoma cells in the microcirculations. Kinetics of integrin-ligand bindings in a shear flow is the determinant of such a process, which has not been well understood. In the present study, interactions of PMNs with WM9 melanoma cells were investigated to quantify the kinetics of beta(2)-integrin and ICAM-1 bindings using a cone-plate viscometer that generates a linear shear flow combined with a two-color flow cytometry technique. Aggregation fractions exhibited a transition phase where it first increased before 60 s and then decreased with shear durations. Melanoma-PMN aggregation was also found to be inversely correlated with the shear rate. A previously developed probabilistic model was modified to predict the time dependence of aggregation fractions at different shear rates and medium viscosities. Kinetic parameters of beta(2)-integrin and ICAM-1 bindings were obtained by individual or global fittings, which were comparable to respectively published values. These findings provide new quantitative understanding of the biophysical basis of leukocyte-tumor cell interactions mediated by specific receptor-ligand interactions under shear flow conditions.
Resumo:
By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200 3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2 alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.
Resumo:
An acute toxicity experiment was conducted by intraperitoneal injection with a sublethal dose of extracted microcystins (MCs), 50 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight (BW), to examine tissue distribution and depuration of MCs in crucian carp (Carassius carassius). Liver to body weight ratio increased at 3, 12, 24, and 48 h postinjection compared with that at 0 h (p < 0.05). MC concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, 48, and 168 h postinjection using liquid chromatography coupled with mass spectrometry (LC-MS). The highest concentration of MCs (MC-RR + MC-LR) was found in blood, 2 -270 ng/g dry weight (DW), followed by heart (3 -100 ng/g DW) and kidney (13 -88 ng/g DW). MC levels were relatively low in liver, gonad, intestine, spleen, and brain. MC contents in gills, gallbladder, and muscle were below the limit of detection. Significant negative correlation was present between MC-RR concentration in blood and that in kidney, confirming that blood was important in the transportation of MC-RR to kidney for excretion. Rapid accumulation and slow degradation of MCs were observed in gonad, liver, intestine, spleen, and brain. Only 0.07% of injected MCs were detected in liver. The recovery of MCs in liver of crucian carp seemed to be dose dependent.
Resumo:
An acute toxicity experiment was conducted to examine the distribution and depuration of microcystins (MCS) in crucian carp (Carassius aurutus) tissues. Fish were injected intraperitoneally with extracted MCs at a dose of 200 mu g MC-LR (where L = leucine and R = arginine) equivalent/kg body weight. Microcystin concentrations in various tissues and aquaria water were analyzed at 1, 3, 12, 24, and 48 h postinjection using liquid chromatography coupled with mass spectrometry. Microcystins were detected mainly in blood (3.99% of injected dose at 1 h), liver (1.60% at I h), gonad (1.49% at 3 h), and kidney (0.14% at 48 h). Other tissues, such as the heart, gill, gallbladder, intestine, spleen, brain, and muscle, contained less than 0.1% of the injected MCs. The highest concentration of MCs was found in blood (526-3,753 ng/g dry wt), followed by liver (103-1,656 ng/g dry wt) and kidney (279-1,592 ng/g dry wt). No MC-LR was detectable in intestine, spleen, kidney, brain, and muscle, whereas MC-RR was found in all examined fish tissues, which might result from organ specificity of different MCs. Clearance of MC-RR in brain tissue was slow. In kidney, the MC-RR content was negatively correlated with that in blood, suggesting that blood was important in the transportation of MC-RR to kidney for excretion.
Resumo:
A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 mug g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 mug g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 mug g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood > liver > muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Syncytin is a placenta-specific protein and generally believed to play a pivotal role in syncytiotrophoblast morphogenesis. In this study, transcripts of this gene were quantified by real-time RT-PCR and the translated products were measured by an indirect immunofluorescence assay. Results showed that syncytin was found to be expressed in all nine leukemia and lymphoma cell lines studied albeit at different levels and in 43 peripheral blood samples of 57 leukemia or lymphoma patients. Neither the transcripts nor the translated syncytin was detected in blood samples of normal individuals. In conclusion, peripheral blood syncytin may serve as a marker for leukemia and lymphoma. ©
Resumo:
A new method for the determination of thyroxine in blood is described. It relies upon the quantitative dependence of the distribution of thyroxine between albumin and thyroxine-binding protein when exogenous 131I-labelled thyroxine is added to serum in vitro. Preliminary results suggest an accuracy in the estimate of the hormone of about 5–10%. Results in a group of patients whose plasma P.B.I, levels were also determined are given and shown to be similar.
Resumo:
A novel flow injection optical fiber biosensor for glucose based on luminol electrochemiluminescence (ECL) is presented. The sol-gel method is introduced to immobilize glucose oxidase (GOD) on the surface of a glassy carbon electrode. After optimization of the working conditions, glucose could be quantitated in the concentration ranges between 50 muM and 10 mM with a detection limit of around 26 muM. Signal reproducibility was about 3.62% relative standard deviation for 11 replicated measurements of 0.1 mM glucose. The ECL biosensor also showed good selectivity and operational stability. The proposed method can be applied to determination of glucose in soft drink samples.
Resumo:
(A) novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO4. Hydrogen peroxide can be directly determined by luminol-KIO4 -H2O2 CL system. The detection limit was 3.0 x 10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0 x 10(-7)-6.0 x 10(-4) mol l(-1). The relative standard deviation of H2O2 was 1.1% for 2.0 x 10(-6) mol l(-1) (N = 11). Glucose was indirectly determined through measuring the H2O2 generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H2O2, which, in turn, coupled with the luminol-KIO4-H2O2 CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mu g ml(-1). The relative standard deviation was 2.1% for 10 mu g ml(-1) (N = 11). Detection limit of glucose was 0.08 mu g ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO4-H2O2 CL system. The calibration curve was linear over the range of 1.0 x 10(-7)-1.0 x 10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0 x 10(-7) mol l(-1) (N = 11). Detection limit of ascorbic acid was 6.0 x 10(=8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection. (C) 1999 Elsevier Science B.V. All rights reserved.