3 resultados para Global problem

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a fully anisotropic analysis of strip electric saturation model proposed by Gao et al. (1997) (Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids, 45, 491-510) for piezoelectric materials. The relationship between the size of the strip saturation zone ahead of a crack tip and the applied electric displacement field is established. It is revealed that the critical fracture stresses for a crack perpendicular to the poling axis is linearly decreased with the increase of the positive applied electric field and increases linearly with the increase of the negative applied electric field. For a crack parallel to the poring axis, the failure stress is not effected by the parallel applied electric field. In order to analyse the existed experimental results, the stress fields ahead of the tip of an elliptic notch in an infinite piezoelectric solid are calculated. The critical maximum stress criterion is adopted for determining the fracture stresses under different remote electric displacement fields. The present analysis indicates that the crack initiation and propagation from the tip of a sharp elliptic notch could be aided or impeded by an electric displacement field depending on the field direction. The fracture stress predicted by the present analysis is consistent with the experimental data given by Park and Sun (1995) (Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric materials. J. Am. Ceram. Soc 78, 1475-1480).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.