33 resultados para Genital Diseases Female
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Ab levels in the genital tract may be important in fertility and in preventing sexually transmitted diseases, In this study, I-125-labeled polymer or monomer mAb IgA (C4pIgA or C4mIgA) and IgC2b (C4IgC) to murine lactate dehydrogenase C4 and a polymer mAb IgA (npIgA) not cross-reacting with mouse sperm were intravenously injected into BALB/c mice, and the relative distribution of these Abs was determined. Polymer IgA was transported much more efficiently into the genital tract, trachea, and duodenum of both sexes than C4IgG and C4 mIgA (p < 0.01), The transport of polymer IgA (C4pIgA and npIgA) into the male genital tract greatly increased following orchiectomy (p < 0.01); this change was not affected by testosterone, suggesting that the unknown regulatory factor(s) from the testis may suppress polymer IgA transport, However, the transport of polymer IgA into female genital tissues was significantly decreased by ovariectomy (p < 0.01); this decline can be rectified by P-estradiol but not progesterone treatment, suggesting that estradiol may stimulate polymer IgA transport, Furthermore, the transport of C4IgG into tissues of the Fallopian tubes and the uterus was significantly decreased by treatment with progesterone (p < 0.01). Together, these findings indicate that serum polymer IgA can be transported selectively into the genital tracts of both sexes, that this transport is strongly under the control of gonads, and that transport of Ige into the Fallopian tubes and uterus is downregulated by progesterone.
Resumo:
Antigen-specific circulating immunoglobulin-secreting cells (ISC) migrate to various secondary and tertiary lymphoid tissues. To understand the migration of the cells into the genital tract and its regulation by sex hormones, spleen-derived SG2 hybridoma cells secreting immunoglobulin G2b (IgG2b) and Peyer's patch-derived PA4 hybridoma cells secreting polymer IgA were labelled with (3) H-TdR, and intravenously injected into syngeneic mice of both sexes. Using flow cytometry, surface molecular markers of plasma cells, CD38 and CD138, and adhesion molecules, CD49d, CD162, and CD11a were found to be positive in SG2 and PA4 cells, but CD62L, alpha4beta7 and CD44 were not expressed on these cells. The relative distribution indexes (RDIs) of the cells in genital tract and other tissues were measured. The means of RDIs of SG2 and PA4 cells in female genital tissues were 6.5 and 4.5 times as many as the means in male genital tissues, respectively. The treatment of ovariectomized mice with beta-oestradiol significantly increased the RDIs of PA4 cells in cervix and vagina, but decreased the RDIs of SG2 cells in vagina, horn of uterus, uterus and rectum (P <0.05). Progesterone treatment increased the RDIs of PA4 cells in vagina and rectum (P <0.05). The treatment with testosterone significantly increased the RDIs of SG2 and PA4 cells in epididymis and accessory sex glands (P <0.05). These results demonstrate that the female genital tract is the preferable site for the migration of circulating hybridoma cells to the male genital tract, and sex hormones play an important role in regulation of the migration of circulating ISC to genital tracts.
Resumo:
To understand better the molecular mechanisms of differential migration of antibody-secreting cells (ASCs) into mouse genital tracts, and regulation by sex hormones, surface markers, hormone receptors and adhesion molecules in mouse SG2 and PA4 hybridoma cells, respectively, secreting IgG2b and polymeric IgA antibody were detected by flow cytometry or RT-PCR. Semiquantitative RT-PCR was also used for measuring mRNA expression of adhesion molecules and chemokines (VCAM-1, ICAM-1, P-selectin, JAM-1 and CXCL12) in genital tracts of various adult mouse groups. The mRNAs of androgen receptor, estrogen receptor beta and CXCR4 were expressed in the ASCs. Sex hormones had no effect on expression of these molecules in ASCs. Except for VCAM-1, mRNA of all examined genes was expressed in normal mouse genital tracts. The mean of relative amounts of ICAM-1 and CXCL12 mRNA in all examined organs of females were higher (2.1- and 1.9-fold) than those in males. After orchiectomy or ovariectomy, the expression of ICAM-1, CXCL12 and P-selectin mRNA in the examined organs increased, except JAM-1 in male and CXCL12 in female. Sex hormone treatment recovered the changes to normal levels of mRNA expression in many examined genital tissues. In combination with our previous work, preferential migration of ASCs into female genital tract and regulation of migration by sex hormones are associated with expression patterns of adhesion molecules and chemokines in genital tract rather than in ASCs. (C) 2006 Elsevier Ireland Ltd. All rights reserved.