9 resultados para Generated Granule Cells
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
Generation of homogeneous oligodendrocytes as donor cells is essential for human embryonic stem cell (hESC)-based cell therapy for demylinating diseases. Herein we present a novel method for efficiently obtaining mature oligodendrocytes from hESCs with high purity (79.7 +/- 6.9%), using hepatocyte growth factor (HGF) and G5 supplement(containing insulin, transferrin, selenite, biotin, hydrocortisone, basic fibroblast growth factor and epidermal growth factor) in a four-step method. We induced hESCs into neural progenitors (NP) with HGF (5 ng/ml) and G5 (1 x) supplemented medium in an adherent differentiation system. The purified NPs were amplified in suspension as neurospheres for 1 month, and terminal oligodendrocyte differentiation was then induced by G5 supplement withdrawal and HGF treatment (20 ng/ml). The cells generated displayed typical morphologies of mature oligodendrocytes and expressed oligodendrocyte markers O4 and myelin basic protein (MBP). Our result revealed that HGF significantly enhanced the proliferation of hESC-derived NPs and promoted the differentiation as well as the maturation of oligodendrocytes from NPs. Further studies suggest that HGF/c-Met signaling pathway might play an important role in oligodendrocyte differentiation in our system. Our studies provide a means for generating the clinically relevant cell type and a platform for deciphering the molecular mechanisms that control oligodendrocyte differentiation. (C) 2009 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
ES cells provide a promising tool for the generation of transgenic animals with site-directed mutations. When ES cells colonize germ cells in chimeras, transgenic animals with modified phenotypes are generated and used either for functional genomics studies or for improving productivity in commercial settings. Althought the ES cell approach has been limited to, mice, there is strong interest for developing the technology in fish.. We describe the step-by-step procedure for developing ES cells in fish. Key aspects include avoiding cell differentiation, specific in vitro traits of pluripotency, and, most importantly, testing for production of chimeric animals as the main evidence of pluripotency. The entire process focuses on two model species, zebrafish and medaka, in which most work has been done. The achievements attained in these species, as well as their applicability to other commercial fish, are discussed. Because of the difficulties relating to germ line competence, mostly of long-term fish ES cells, alternative cell-based approaches such as primordial germ cells and nuclear transfer need to be considered. Although progress to date has been slow, there are promising achievements in homologous recombination and alternative avenues yet to be explored that can bring ES technology in fish to fruition.
Resumo:
Embryonic stem (ES) cells provide a unique tool for introducing random or targeted genetic alterations, because it is possible that the desired, but extremely rare recombinant genotypes can be screened by drug selection. ES cell-mediated transgenesis has so far been limited to the mouse. In the fish medaka (Oryzias latipes) several ES cell lines have been made available. Here we report the optimized conditions for gene transfer and drug selection in the medaka ES cell line MES1 as a prelude for gene targeting in fish. MES1 cells gave rise to a moderate to high transfection efficiency by the calcium phosphate co-precipitation (5%), commercial reagents Fugene (11%), GeneJuice (21%) and electroporation (>30%). Transient gene transfer and CAT reporter assay revealed that several enhancers/promoters and their combinations including CMV, RSV and ST (the SV40 virus early gene enhancer linked to the thymidine kinase promoter) were suitable regulatory sequences to drive transgene expression in the MES1 cells. We show that neo, hyg or pac conferred resistance to G418, hygromycin or puromycin for positive selection, while the HSV-tk generated sensitivity to ganciclovir for negative selection. The positive-negative selection procedure that is widely used for gene targeting in mouse ES cells was found to be effective also in MES1 cells. Importantly, we demonstrate that MES1 cells after gene transfer and long-term drug selection retained the developmental pluripotency, as they were able to undergo induced differentiation in vitro and to contribute to various tissues and organs during chimeric embryogenesis.
Resumo:
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.
Resumo:
The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper. Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.
Resumo:
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the a-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
Resumo:
We report enhanced polymer photovoltaic (PV) cells by utilizing ethanol-soluble conjugated poly (9, 9-bis (6'-diethoxylphosphorylhexyl) fluorene) (PF-EP) as a buffer layer between the active layer consisting of poly(3-hexylthiophene)/[6, 6]-phenyl C61-butyric acid methyl ester blend and the Al cathode. Compared to the control PV cell with Al cathode, the introduction of PF-EP effectively increases the shunt resistance and improves the photo-generated charge collection since the slightly thicker semi-conducting PF-EP layer may restrain the penetration of Al atoms into the active layer that may result in increased leakage current and quench photo-generated excitons. The power conversion efficiency is increased ca. 8% compared to the post-annealed cell with Al cathode.
Resumo:
Tandem polymer photovoltaic cells with the subcells having different absorption characteristics in series connection are widely investigated to enhance absorption coverage over the solar spectrum. Herein. we demonstrate efficient tandem polymer photovoltaic cells with the two stacked subcells comprising different band-gap conjugated polymer and fullerene derivative bulk heterojunction in parallel connection. A semitransparent metal layer combined with inorganic semiconductor compounds is utilized as the intermediate electrode of the two stacked subcells to create the required built-in potential for collecting photo-generated charges. The short-circuit current of the stacked cell is the sum of the subcells and the open-circuit voltage is similar to the subcells.