12 resultados para Generalized estimation equation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.
Resumo:
本论文中采用IP方法模拟硬盘读写头的气膜润滑问题,并选择耗时但精准的DSMC方法作为该问题中IP方法的检验标准,IP方法计算得到的读写头表面压力分布及读写头所受净升力为读写头的设计提供可靠的参考数据。 首先,将读写头复杂表面简化为平面并假定尺寸为微米(远小于真实的毫米),微米尺寸时可以得到DSMC的模拟结果用于比较。IP法对该问题的模拟结果与DSMC的模拟结果完全吻合。 其次,选定一个真实的读写头表面几何,但仍然假定尺寸为微米。IP法在该问题的应用过程中遇到四点困难,我们提出或采取了相应的解决办法。在复杂表面几何的读写头气膜润滑问题中,IP法的模拟结果与DSMC的模拟结果也相符一致。 最后完成真实几何、真实尺寸(毫米)的读写头气膜润滑问题的模拟,这也是本论文的最终研究目标。IP法模拟该问题时需要采用大网格,为此我们构造二维检验模型验证了大网格的合理性。 真实几何读写头气膜润滑问题的模拟结果表明,在流场的局部区域压力沿着高度方向变化显著,这意味着读写头问题的传统计算方法(即概括性雷诺方程)在该局部区域不成立,故用它计算得到的结果值得认真检验,但文献中尚未给出过这类检验。这正是该论文的研究背景和采用新方法(IP方法)的原因。 本论文研究的问题属于过渡领域、低速流动问题,故本论文还介绍了该领域另外一种粒子模拟方法(LVDSMC方法)以及我们对该方法提出的一些改进。 关键词:硬盘读写头,气膜润滑,概括性雷诺方程,IP方法,DSMC方法,过渡领域,LVDSMC方法
Resumo:
We derive the generalized rate equation for the coupled quantum-dot (QD) system irradiated by a microwave field in the presence of a quantum point contact. It is shown that when a microwave field is tuned in resonance with the energy difference between the ground states of two QD's, the photon-assisted tunneling occurs and, as a result, the coupled QD system may be used as the single qubit. Furthermore, we show that the oscillating current through the detector decays drastically as the dephasing rate increases, indicating clearly the influence of the dephasing effect induced by the quantum point contact used as a detecting device.
Resumo:
We derive the generalized Friedmann equation governing the cosmological evolution inside the thick brane model in the presence of two curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two effective four-dimensional reductions of the generalized Friedmann equation in some limits and demonstrate that the reductions but not the generalized Friedmann equation can be rewritten as the first law of equilibrium thermodynamics on the apparent horizon of thick braneworld.
Resumo:
The power-time curves of growth of three strains of petroleum bacteria at different NaCl concentrations at 40.0 and 50.0 degreesC have been determined by using a 2277 Thermometric Thermal Activity Analyser. An equation of a power-time curve, ln[alphaP(K)/P(t) - 1] = ln[(alphaK - N-0)/N-0] - alphakt, was established based on the generalized logistic equation, where P(t) is the thermal power at time t, K the carrying capacity, P-K = P0K, P-0 the thermal power of one cell, N-0 the bacterial population at time zero, alpha = (k - D)/k. The method of four observed points with the same time interval was used to calculate the value of P-K. The growth rate constant k and the death rate constant D were calculated. The NaCl concentration of optimum growth rate of petroleum bacteria at 40.0 and 50.0 degreesC, respectively, have been obtained according to the curves k - D versus NaCl concentration, which are 0.26, 0.54 and 0.57 mol l(-1) for B-1, B-2 and B-3, respectively, at 50.0 degreesC, 0.26, 0.55 and 0.56 mol l(-1) for B-1, B-2 and B-3, respectively, at 40.0 degreesC. The results indicated that the effect of temperature on NaCl concentration of optimum growth rate was small. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
To describe the various complex mechanisms of the dissipative dynamical system between waves, currents, and bottoms in the nearshore region that induce typically the wave motion on large-scale variation of ambient currents, a generalized wave action equation for the dissipative dynamical system in the nearshore region is developed by using the mean-flow equations based on the Navier-Stokes equations of viscous fluid, thus raising two new concepts: the vertical velocity wave action and the dissipative wave action, extending the classical concept, wave action, from the ideal averaged flow conservative system into the real averaged flow dissipative system (that is, the generalized conservative system). It will have more applications.
Resumo:
The effective stress principle has been efficiently applied to saturated soils in the soil mechanics and geotechnical engineering practice; however, its applicability to unsaturated soils is still under debate. The appropriate selection of stress state variables is essential for the construction of constitutive models for unsaturated soils. Owing to the complexity of unsaturated soils, it is difficult to determine the deformation and strength behaviors of unsaturated soils uniquely with the previous single-effective-stress variable theory and two-effective-stress-variable theory in all the situations. In this paper, based on the porous media theory, the specific expression of work is proposed, and the effective stress of unsaturated soils conjugated with the displacement of the soil skeleton is further derived. In the derived work and energy balance equations, the energy dissipation in unsaturated soils is taken into account. According to the derived work and energy balance equations, all of the three generalized stresses and the conjugated strains have effects on the deformation of unsaturated soils. For considering these effects, a principle of generalized effective stress to describe the behaviors of unsaturated soils is proposed. The proposed principle of generalized effective stress may reduce to the previous effective stress theory of single-stress variable or the two-stress variables under certain conditions. This principle provides a helpful reference for the development of constitutive models for unsaturated soils.
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
Bottom-simulating reflectors (BSRs) were observed beneath the seafloor in the northern continental margin of the South China Sea (SCS). Acoustic impedance profile was derived by Constrained Sparse Spike Inversion (CSSI) method to provide information on rock properties and to estimate gas hydrate or free gas saturations in the sediments where BSRs are present. In general, gas hydrate-bearing sediments have positive impedance anomalies and free gas-bearing sediments have negative impedance anomalies. Based on well log data and Archie's equation, gas hydrate saturation can be estimated. But in regions where well log data is not available, a quantitative estimate of gas hydrate or free gas saturation is inferred by fitting the theoretical acoustic impedance to sediment impedance obtained by CSSI. Our study suggests that gas hydrate saturation in the Taixinan Basin is about 10 - 20% of the pore space, with the highest value of 50%, and free gas saturation below BSR is about 2 - 3% of the pore space, that can rise to 8 - 10% at a topographic high. The free gas is non-continuous and has low content in the southeastern slope of the Dongsha Islands. Moreover, BSR in the northern continental margin of the SCS is related to the presence of free gas. BSR is strong where free gas occurs.
Resumo:
Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence