118 resultados para Gas tungsten arc welding.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用多层前向反馈神经网络模型,对钛合金钨极氩弧焊的焊接接头机械性能进行了模拟和预测。其中,输入参数包括钛合金成分、冷却速度和热处理参数;输出参数包括5个重要的机械性能,即极限抗拉强度、延伸率、断面收缩率、屈服强度和硬度。详细分析了铝和钒这2种元素对机械性能的影响。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文介绍了高性能机器人控制器的研制情况.该系统具有较高的控制精度,可完成对机器人和多个外部轴的协调控制.为便于国内用户使用,实现了中文界面功能键驱动的汉字编程示教盒.为适应机器人生产线的需要,提供了丰富的联网功能和生产线监控诊断功能.目前该系统已用于新松公司的6kg工业机器人产品中.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文研究开发了一个弧焊机器人焊接工艺专家系统.该系统实时性强、可靠性好,可以根据焊接初始条件制定合理的焊接工艺参数,实现焊接工艺的在线规划设计。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

为了推广弧焊机器人的应用,应用VisualBASIC和C语言开发了一个弧焊机器人焊接咨询专家系统,可用来帮助弧焊机器人操作者进行焊接工艺的制定和选择。

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation: to help gather enough methane into a small area and to modulate the thermal regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfully observed using a novel approach. A specially designed copper mirror with a boron nitride film coated on its surface central-region is employed to avoid the effect of intensive light emitted from the arc column upon the observation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surface of the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argon as the plasma-forming gas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon- nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimentally observed, results are presented for the DCarcplasmajets and theirarc-rootbehaviors generated atreduced gas pressure and without or with an' applied magnetic field. Pure argon, argon -hydrogen or argon-nitrogen mixture is used as the plasma-forming gas. A specially designed copper mirror is constructed and used for better observing the arc-root behavior on the anode surface of the DC non-transferred arcplasma torch. It is shown that for the cases without applied magnetic field, the laminar plasmajets are stable and approximately axisymmetrical. The arc-root attachment on the anode surface is completely diffusive when argon is used as the plasma-forming gas, while the arc-root attachment often becomes constrictive when hydrogen or nitrogen is added into the argon. When an external magnetic field is applied, the arcroot tends to rotate along the anode surface of the non-transferred arcplasma torch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an AC plasma arc reactorwithworkinggasofhydrogen is applied to destruct chemicalagents. The temperature attains 6000℃ in the arc area and over 2000℃ in the other space of the crucible. The Arsenic (As) contained chemical agent -Adams (DM) used in the experiment, was added into the plasmareactorwith the additives: Fe, CaO, and SiO_2, etc. Pyrolysis and destructionofchemicalagents occurs very quickly in the high-temperature reactor. Gaseous hydrogen was injected into the reactor to form a reductive environment, to reduce the formation of As_2O_3 etc. In the bottom of the crucible, the solid residues of toxicant and additives were melted and formed as vitrified slag. The off-gas was treated by a wet scrubber. The amounts of arsenic distributed in the off-gas, vitrified slag, waste water and solids (soot) were measured. The result shows DM is completely destructed in the plasmareactor. The Arsenic content in the off-gas, vitrified slag, waste water and soot are 0.052 mg/l, 3.0%, 10.44 mg/l, and 5.1% respectively, which will be disposed as the pollutant matters. The results show that the plasma technology is an environmentally friendly technology to destruct chemicals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma-arc technology was developed to dispose of chemical wastes from a chemical plant by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A pilot plant system with this technology was constructed to destroy two types of chemical wastes. The system included shredding, mixing, and feeding subsystems, a plasma-arc reactor of 150 kW, an off-gas burning subsystem, and a scrubbing subsystem. The additives (CaO, SiO2, and Fe) were added into the reactor to form vitrified slag and capture the hazardous elements. The molten slag was quickly quenched to form an amorphous glassy structure. A direct current (DC) experimental facility of 30kW with plasma-arc technology was also set up to study the pyrolysis process in the laboratory, and the experimental results showed the cooling speed is the most important factor for good vitrified structure of the slag. According to previous tests, the destruction and removal efficiency (DRE) for these chemical wastes was more than 99.999%, and the polychlorinated biphenyls (PCBs) concentration in the solid residues was in the range of 1.28 to 12.9mg/kg, which is far below the Chinese national emission limit for the hazardous wastes. A simplified electromagneto model for numerical simulation was developed to predict the temperature and velocity fields. This model can make satisfactory maximum temperature and velocity distributions in the arc region, as well as the results by the magneto hydrodynamic approach.