65 resultados para Gas Shift Reaction
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A series of potassium-promoted CoMo/Al2O3 has been investigated by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and temperature-programmed reduction (TPR). CoMoO4 was found in the CoMo/Al2O3 catalyst by XRD and is destroyed by the presence of potassium. The reducibility of molybdenum is enhanced by potassium in the CoMoK/Al2O3 catalyst and is easier to reduce to Mo(IV) during sulfidation. In the oxidic state catalyst cobalt is increased on the surface by the addition of potassium. After sulfidation this phenomena disappeared, the distribution of cobalt remains at a constant level and is unaffected by the potassium content. The addition of potassium leads to a monotonical decrease of the molybdenum dispersion with the impregnating amount of potassium in the oxidic state catalyst but is more complicated after sulfidation. Potassium is well dispersed on the surface in both the oxidic and sulfided state. The activity in the water-gas shift reaction was correlated with the potassium content of CoMoK/Al2O3.
Resumo:
中国科学院山西煤炭化学研究所
Resumo:
In an attempt to effectively integrate catalytic partial oxidation (CPO) and steam reforming (SR) reactions on the same catalyst, autothermal reforming (ATR) of n-octane was addressed based on thermodynamic analysis and carried out on a non-pyrophoric catalyst 0.3 wt.% Ru/K2O-CeO2/gamma-Al2O3. The ATR of n-octane was more efficient at the molar ratio Of O-2/C 0.35-0.45 and H2O/C 1.6-2.2 (independent parameters), respectively, and reforming temperature of 750-800 degrees C (dependent parameter). Among the sophisticated reaction network, the main reaction thread was deducted as: long-chain hydrocarbon -> CH4, short-chain hydrocarbon -> CO2, CO and H-2 formation by steam reforming, although the parallel CPO, decomposition and reverse water gas shift reaction took place on the same catalyst. Low temperature and high steam partial pressure had more positive effect on CH4 SR to produce CO2 other than CO. This was verified by the tendency of the outlet reformate to the equilibrium at different operation conditions. Furthermore, the loss of active components and the formation of stable but less active components in the catalyst in the harsh ATR atmosphere firstly make the CO inhibition capability suffer, then eventually aggravated the ATR performance, which was verified by the characterizations of X-ray fluorescence, BET specific surface areas and temperature programmed reduction. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Recent advances in the gas - phase reaction of aromatics with cationic electrophiles are reviewed. The overall substitution reaction is analyzed in terms of its elementary steps. Mechanistic studies have been focused on the structure and reactivity of covalent and non - covalent ionic intermediates, which display a rich chemistry and provide benchmark reactivity models. Particular attention has been devoted to proton transfer reactions, which may occur intra or intermolecularly in arenium intermediates.
Resumo:
The dissociation process of gas hydrate was regarded as a gas-solid reaction without solid production layer when the temperature was above the zero centigrade. Based on the shrinking core model and the fractal theory, a fractional dimension dynamical model for gas hydrate dissociation in porous sediment was established. The new approach of evaluating the fractal dimension of the porous media was also presented. The fractional dimension dynamical model for gas hydrate dissociation was examined with the previous experimental data of methane hydrate and carbon dioxide hydrate dissociations, respectively. The calculated results indicate that the fractal dimensions of porous media acquired with this method agree well with the previous study. With the absolute average deviation (AAD) below 10%, the present model provided satisfactory predictions for the dissociation process of methane hydrate and carbon dioxide hydrate.
Resumo:
Only H2S consumption and H2O formation was found in the sulfurization of CoMoK/Al2O3 water gas shift catalyst with H2S/H-2. but CO2 was formed first, then CH4, H2O and H2S appeared in the later part of TPS with CS2/H-2. Carbon deposition on the catalyst during the sulfurization with CS2/H-2 caused a lower activity than the catalyst sulfurized with H2S but could be removed in the run of WGS reaction.