17 resultados para Gamma Radiation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A process for fabricating n channel JFET/SOS (junction field-effect transistors on silicon-on-sapphire) has been researched. The gate p(+)n junction was obtained by diffusion, and the conductive channel was gotten by a double ion implantation. Both enhancement and depletion mode transistors were fabricated in different processing conditions. From the results of the Co-50 gamma ray irradiation experimental we found that the devices had a good total dose radiation-hardness. When the tot;ll dose was 5Mrad(Si), their threshold voltages shift was less than 0.1V. The variation of transconductance and the channel leakage current were also little.
Resumo:
Polybutadiene latex (PBL) vulcanization induced by Co-60 radiation and the influence of dose on crosslinking were investigated. Morphology and particle size distribution were examined by AFM and a particle size analyzer. The casting films were characterized for their swelling and mechanical properties as a function of dose.
Resumo:
BACKGROUND: Poly(butylene adipate-co-terephthalate) (PBAT) has attracted wide interest as a biodegradable polymer. However, its use is restricted in certain applications due to its low melting point.RESULTS: PBAT was treated using gamma-radiation. The radiation features were analyzed using Soxhlet extraction, and the ratio of chain scission and crosslinking and gelation dose were determined using the classical Charlesby-Pinner equation. The results showed that PBAT is a radiation-crosslinkable polymer. The degree of crosslinking increased with increasing radiation dose; the relation between sol fraction and dose followed the Charlesby-Pinner equation. Differential scanning calorimetry analyses showed that the melting temperature (T-m) and the heat of fusion (Delta H-m) of PBAT exhibited almost no change in the first scan. The second scan, however, showed a decrease in T-m and Delta H-m. The glass transition temperature of irradiated PBAT increased with increasing radiation dose.
Resumo:
Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.
Resumo:
CdS nanocrystals were synthesized through AOT/heptane/H2O reverse micelles. New stable reverse mikelles were obtained by adding an appropriate amount of acrylic. acid monomer, CdS nanocrystal-poly(acrylic acid) composites were synthesized by gamma-radiation with a reverse mi'celle route at room temperature. The US nanocrystals with narrow size distribution were, found to be dispersed homogeneously in the poly(acrylic acid) matrix. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.
Resumo:
A comparison of radiation damage to nylon 1010 (denoted nylon-a) and nylon 1010 containing neodymium oxide (Nd2O3) (denoted nylon-b) was made by DSC, WAXD, ESR and the determination of gel fractions. The results show that radiation damage to nylon-b is delayed, and radiation damage to nylon-a is more severe than that to nylon-b, due to the protection of the fold surface of the lamellae. Furthermore, the fact that the damage begins with the fold surface of the lamellae is confirmed. (C) 1996 Elsevier Science Limited
Resumo:
In the present work we attempt to settle the controversy on the district wherein the radiation induced reaction preferentially occurs through examining the structural changes of the irradiated polyamide-1010 specimens on both the crystallographic and the supermolecular level by using WAXD and SAXS techniques. Experimental results indicated that the chain crosslinking and scission of the irradiated specimens occur mainly in the amorphous region and on the crystal surface (or interphase), and extend into the inner portion of the crystal with increasing radiation dose.
Resumo:
The influence of gamma-radiation on polyamide 1010 aggregate structures and crystal damage were examined by using wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) techniques. The results revealed that some structural parameters of the aggregated state, the density differences and the degree of crystallinity W-c,W-x, essentially decreased with increasing radiation dose, but the specific surface O-s increased. Crosslinking and scission of irradiated polyamide 1010 samples occurred mainly in amorphous and interphase regions, and crystal damage and amorphization induced by gamma-radiation spread from the interphase and extended into the crystal phase with increasing radiation dose. This result also indicated that the (010) reflection with the hydrogen bond was more susceptible to the action of radiation.
Resumo:
Aimed at raising the room temperature ionic conductivity of PEO-based solid polymer electrolyte and considered that the ionic conduction preferentially occurs in the amorphous phase, we lightly crosslinked the high MW PEO through gamma-irradiation and further suppressed the residual crystallinity by plasticizing with propylene carbonate. By incorporating LiClO4 salt to the above described polymer host, the ambient (25 degrees C) ionic conductivity of the electrolyte system could reach as high as 6.8 X 10(-4) S/cm. As the electrolyte was a crosslinked system, it was mechanically self-supportable. Based on the preliminary results of the electrochemical performance of the secondary lithium battery, assembled by using this kind of solid electrolyte and polyaniline as positive electrode, it is realized that the electrolyte thus prepared is of high expectancy.
Resumo:
Radiation effects on polyamide-1010 specimens having various states of aggregation were studied using wide angle X-ray diffraction, electron spin resonance, calorific and sol measurement techniques. Experimental results indicated that chain crosslinking
Resumo:
The effect of gamma-radiation on dynamic viscoelastic properties and thermal behavior for low density polyethylene(LDPE) have been investigated. The store energy modulus (E) of the samples increased after radiation. The beta and alpha transition temperature shifted to higher temperature with increasing irradiation dose. The results of thermal analysis show that crystal melting temperature (Tm), enthalpy(DELTAHm) and crystal disapperance temperature(Td) for irradiated samples decreases with increasing of dose.
Resumo:
This paper studies gamma-radiation induced lamellar damage mechanism of poly(vinylidene fluoride), using wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), electronic paramagnetic resonance (EPR) and gel fraction determination. We believe that it is ''lamellae core damage'' rather than ''lamellae surface damage'' that results in the decrease of the crystallinity.
Resumo:
By using WAXD, DSC and gel fraction determination techniques, the mechanism of radiation crosslinking of polyethylene oxide (PEO) was explored, and the dependence of aggregated state on the chemical reaction and physical structure was also discussed. It was found that just like other semi-crystalline polymers, the state of aggregation of the specimen has a profound influence on the radiation effects on PEO. On the contrary, the crystalline structure of the specimen is severely affected with the increase in radiation dose and eventually amorphortized when subjected to an extremely high radiation dose.
CHARACTERIZATION OF GAMMA-RADIATION CROSS-LINKED CRYSTALLINE POLYMERS BY CRYSTALLIZATION TEMPERATURE
Resumo:
The effect of gamma-radlatlon on plain crystalline polymers and crystalline polymers containing different amounts of difunctional monomer both in vacuum and in air at room temperature has been investigated with DSC. It was found that the crystallization temperature T_c of crosslinked sample measured on DSC at a constant cooling rate decreases with increasing radiation dose. The difference between T_c before and after crosslinking (T_(c_0)-T_(c_R)) is linearly related to the radiation dose for plain polymer....